Primitive of cos-1(x) w.r.t. x is
xcos-1x - 121 - x2 + c
xcos-1x - 1 - x2 + c
xcos-1x + 1 - x2 + c
xcos-1x + 121 - x2 + c
If y = log(cot(x)), then ∫0π2ydx is equal to
1
0
π2
π4
∫1sin2x + cos2xdx is equal to
sinx - cosx + c
tanx + cotx + c
cosx + sinx + c
tanx - cotx + c
Primitive of 14x + x is equal to
2log1 + 4x + c
12log4 - x + c
2log 4 + x + c
12log 4 + x + c
∫exlogx + 1xdx is equal to
exlogx + c
exlogx+ c
logxx + c
exx + c
∫01x21 + x2dx is equal to
π4 - 1
1 - π2
π2 - 1
1 - π4
Minimize : z = 3x + y, subject to 2x + 3y ≤ 6, x + y ≥ 1, x ≥ 0, y ≥ 0
x = 1, y = 1
x = 0, y = 1
x = 1, y = 0
x = - 1, y = - 1
∫dxxx7 + 1 is equal to
logx7x7 + 1
17logx7x7 + 1 + c
logx7 + 1x7 + c
17logx7 + 1x7
Using Trapezoidal rule and following table ∫08fxdx is equal to
184
92
46
- 36
∫dxx + x is equal to
12log1 + x + c
2log1 + x + c
14log1 + x + c
3log1 + x + c