Evaluate the following integral: from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

51.

Explain the following integral:
space integral subscript 0 superscript 1 fraction numerator 1 over denominator 1 plus straight x squared end fraction dx

90 Views

52.

Explain the following integral:
integral subscript 2 superscript 3 fraction numerator 1 over denominator straight x squared minus 1 end fraction dx

89 Views

53.

Explain the following integral:
integral subscript 2 superscript 3 fraction numerator straight x over denominator straight x squared plus 1 end fraction dx

88 Views

54. Evaluate the following integral:
integral subscript 1 superscript 2 fraction numerator dx over denominator left parenthesis straight x plus 1 right parenthesis space left parenthesis straight x plus 2 right parenthesis end fraction
92 Views

Advertisement
55. Evaluate the following integral:
integral subscript 1 superscript 2 fraction numerator 5 straight x squared over denominator straight x squared plus 4 straight x plus 3 end fraction dx

110 Views

56. Evaluate the following integral
space integral subscript 2 superscript 3 fraction numerator 1 over denominator straight x squared minus 1 end fraction dx



93 Views

57. Evaluate the following integral:
space space integral subscript 0 superscript 4 fraction numerator dx over denominator square root of straight x squared plus 2 straight x plus 3 end root end fraction
96 Views

Advertisement

58. Evaluate the following integral:
integral subscript 4 superscript 9 fraction numerator square root of straight x over denominator open parentheses 30 minus straight x to the power of begin display style 3 over 2 end style end exponent close parentheses squared end fraction dx


Let I = integral subscript 4 superscript 9 fraction numerator square root of straight x over denominator open parentheses 30 minus straight x to the power of begin display style 3 over 2 end style end exponent close parentheses squared end fraction dx

Let straight I subscript 1 space equals space integral fraction numerator square root of straight x over denominator open parentheses 30 minus straight x to the power of begin display style 3 over 2 end style end exponent close parentheses squared end fraction dx

Put   30 minus straight x to the power of 3 over 2 end exponent space equals space straight t comma space space space therefore space space minus 3 over 2 straight x to the power of 1 half end exponent ax space equals space dt space space space space space space space rightwards double arrow space space space space square root of straight x space dx space space equals negative 2 over 3 dt
therefore                straight I subscript 1 space equals space minus 2 over 3 integral 1 over straight t squared dt space equals negative 2 over 3 integral straight t to the power of negative 2 end exponent dt space equals space minus 2 over 3 fraction numerator straight t to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space fraction numerator 2 over denominator 3 straight t end fraction
therefore          integral fraction numerator square root of straight x over denominator open parentheses 30 minus straight x to the power of begin display style 3 over 2 end style end exponent close parentheses squared end fraction dx space equals space fraction numerator 2 over denominator 3 open parentheses 30 minus straight x to the power of begin display style 3 over 2 end style end exponent close parentheses end fraction space equals space straight F left parenthesis straight x right parenthesis comma space say.
by the second fundamental theorem,
I = F(9) - F(4) = 2 over 3 open square brackets fraction numerator 1 over denominator 30 minus 9 to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets minus 1 third open square brackets fraction numerator 1 over denominator 30 minus 4 to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
       equals space 2 over 3 open square brackets fraction numerator 1 over denominator 30 minus 27 end fraction close square brackets minus 2 over 3 open square brackets fraction numerator 1 over denominator 30 minus 8 end fraction close square brackets space equals 2 over 3 cross times 1 third minus 2 over 3 cross times 1 over 22
equals space 2 over 3 open parentheses 1 third minus 1 over 22 close parentheses space equals space 2 over 3 cross times fraction numerator 22 minus 3 over denominator 66 end fraction space equals space 2 over 3 cross times 19 over 66 space equals space 19 over 99

137 Views

Advertisement
Advertisement
59.

Evaluate the following definite integral
integral subscript 0 superscript 2 fraction numerator 6 straight x plus 3 over denominator straight x squared plus 4 end fraction dx.

94 Views

60.

Evaluate the following definite integral
integral subscript 0 superscript 1 fraction numerator 2 straight x over denominator 5 straight x squared plus 1 end fraction dx

92 Views

Advertisement