Let I1 = ∫0nxdx and I2 = ∫0nxdx, wher

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

321.

Let I = 1019sinx1 + x8dx, then

  • I < 10- 9  

  • I < 10- 7  

  • I < 10- 5  

  • I > 10- 7  


Advertisement

322.

Let I0nxdx and I20nxdx, where [x] and {x} are integral and fractional parts of x and n  N - {1}. Then, I1/Iis equal to

  • 1n - 1

  • 1n

  • n

  • n - 1


D.

n - 1

We have,

I10nxdx

01xdx + 12xdx + 23xdx +.... + n - 1nxdx

010dx + 121dx + 232dx + ... + n - 1nn - 1dx

0 + x12 + 2x23 +... + (n - 1)xn - 1n

= (2 - 1) + 2(3 - 2) + ... + (n - 1)(n - (n - 1))

= 1 + 2 + 3 + ... + (n - 1)

(n - 1)(n - 1 +1)2     n = n(n + 1)2

n(n - 1)2

Now, I20nxdx

            = 0nx - x dx

            = x220n - I1

            = n22 - nn - 12

            = n2 - n2 +n2

            = n2

 I1/I2n(n - 1)2n2

            = (n - 1)


Advertisement
323.

The value of limnnn2 + 12 +nn2 + 22 + ... +12n is

  • 4

  • π4

  • π4n

  • π2n


324.

The value of 0100ex2dx

  • is less than 1

  • is greater than 1

  • is less than or equal to 1

  • lies in the closed interval [1, e]


Advertisement
325.

0100ex - xdx is equal to

  • e100 - 1100

  • e100 - 1e - 1

  • 100(e - 1)

  • e - 1100


326.

If f(x) = - 1xtdt, then for any x  0, f(x) is equal to

  • 121 - x2

  • 1 - x2

  • 121 + x2

  • 1 + x2


327.

Let I = 0100π1 - cos2xdx, then

  • I = 0

  • I = 2002

  • I = π2

  • I = 100


328.

Let f be a non-constant continuous function for all x > 0. Let f satisfy the relation f(ax) f(a-x)=1 for some a  R*. Then, I = 0adx1 + f(x) is equal to

  • a

  • a4

  • a2

  • f(a)


Advertisement
329.

logx3xdx is equal to

  • 13logx2 + C

  • 23logx2 + C

  • 23logx2 + C

  • 13logx2 + C


330.

2xf'(x) + f(x)log2dx

  • 2xf'(x) + C

  • 2xlog(2) + C

  • 2xf(x) + C

  • 2x + C


Advertisement