If I = ∫01dx1 + xπ2, then
loge2 < 1 < π4
loge2 > 1
I = π4
I = loge2
∫01000ex - xdx is equal to
e1000 - 1e - 1
e1000 - 11000
e - 11000
1000(e - 1)
∫sin-1x1 - x2dx is equal to
logsin-1x + c
12sin-1x2 + c
log1 - x2 + c
sincos-1x + c
B.
Let I = ∫sin-1x1 - x2dxPut sin-1x = t⇒ 11 - x2dx = dt∴ I = ∫tdt = t22 + c = sin-1x22 + c
∫dxxx + 1 equals
logx + 1x + c
logxx + 1 + c
logx - 1x + c
logx - 1x + 1 + c
The value of integral ∫- 11x + 2x + 2dx is
1
2
0
- 1
∫dxsinx + 3cosx
12logtanx2 - π6 + c
12logtanx4 - π6 + c
12logtanx2 + π6 + c
12logtanx4 + π3 + c
If f(x) = f(a - x), then ∫abfxdx is equal to
∫0afxdx
a22∫0afxdx
a2∫0afxdx
- a2∫0afxdx
The value of ∫0∞dxx2 + 4x2 + 9 is
π60
π20
π40
π80
If I1 = ∫0π4sin2xdx and I2 = ∫0π4cos2xdx, then
I1 = I2
I1 < I2
I1 > I2
I2 = I1 + π4
The integrating factor of the differential equation xlogxdydx + y = 2logx is given by
ex
log(x)
log(log(x))
x