If ∫- 14fxdx = 4 and ∫243 - fxdx = 7, then the value of
∫- 12fxdx is
- 2
3
4
5
D.
Since, ∫243 - fxdx = 7⇒ 3x24 - ∫24fxdx = 7⇒ ∫24fxdx = 6 - 7 = - 1∴ ∫- 12fxdx = ∫- 14f(x)dx - ∫24fxdx = 4 - (- 1) = 5
If m, n be integers, then find the value of
∫- ππcosmx - sinnx2dx
If I = ∫- ππesinxesinx + e- sinxdx, then I equals
π2
2π
π
π4
If h(x) = ∫0xsin4tdt, then hx + π equals
hxhπ
hx - hπ
hx + hπ
The value of the integral ∫02x2 - 1dx is
0
2
- 13
The value of ∫0πcosxdx is
The value of ∫- 33ax5 + bx3 + cx + kdx where a, b, c, k are constant, depends only on
a and k
a and b
a, b and c
k
The value of the integral ∫- aaxex21 + x2dx is
ea2
e- a2
a
Evaluate ∫x2x1 + x2dx
If ∫sinxsinx - adx = Ax + Blogsinx - α + c1, then the values of (A, B) is
sinα, cosα
cosα, sinα
- sinα, cosα
- cosα, sinα