∫secxcscx2cotx - secxcscxdx is equal to
logsecx + tanx + c
logsecx + cscx + c
12logsec2x + tan2x + c
logsec2x + csc2x + c
If ∫0a2a - xdx = μ and ∫0afxdx = λ, then ∫02afxdx equals
2λ - μ
λ + μ
μ - λ
λ - 2μ
B.
Given, ∫0af2a - xdx = μand ∫0afxdx = λNow, using properties of definite integral ∫02afxdx = ∫0afxdx + ∫0af2a - xdx⇒ ∫02afxdx = λ + μ
∫tansin-1xdx is equal to
11 - x2 + c
- 1 - x2 + c
- x1 - x2 + c
x1 - x2 + c
∫sinx - cosx4sinx + cosxdx is equal to
sinx - cosx5 + c
sinx - cosx55 + c
sinx - cosx44 + c
sinx + cosx55 + c
∫esinθlogsinθ + csc2θcosθdθ is equal to
∫esinθlogsinθ + csc2θ + c
esinθlogsinθ + cscθ + c
esinθlogsinθ - cscθ
esinθlogsinθ - csc2θ
∫e3logxx4 + 1- 1dx is equal to
e3log(x) + c
14logx4 + 1
log(x4 + 1) + c
12logx4 + 1 + c
If ∫0πxfsinxdx = A∫0π2fsinxdx, then A is
0
π
π4
2π
∫- 22xdx is equal to
1
2
3
4
If ∫sinxsinx - αdx = Ax + Blogsinx - α + C, then value of A - B at α = π2 is
- 1
If ∫abx3dx = 0 and ∫abx2dx = 23, then the values of a and b are respectively
1, - 1
- 1, 1
1, 1
- 1, - 1