∫01xe- 5xdx is equal to
125 - 6e- 525
125 + 6e- 525
- 125 - 6e- 525
125 + 125e- 5
∫5x dx1 - x3 is equal to
52x - 12 - 5x - 1 + C
52x - 12 + 5x - 1 + C
53x - 12 + 52x - 1 + C
53x - 12 - 52x - 1 + C
B.
Let I = ∫5x1 - x3Let 5x1 - x3 = A1 - x + B1 - x2 + C1 - x35x = A1 - x2 + B1 - x + C⇒ 5x = A1 - 2x + x2 + B1 - x + COn equating the coefficients of x2 , x and constant terms, we get 0 = A, 5 = - 2A - B, 0 = A + b + C∴ 5 = - 20 - B ⇒ B = - 5and 0 = 0 - 5 + C⇒ C = 5∴ 5x1 - x3 = 0 + - 51 - x3 + 51 - x3
On integrating both sides, we get
∫5x1 - x3dx = ∫- 51 - x2dx + ∫51 - x3dx= - 5- 1- 11 - x1 + 5- 1- 21 - x2= - 51 - x + 521 - x2 + C= 52x - 12 + 5x - 1 + C
∫dxx - x is equal to
2logx - 1 + C
2logx + 1 + C
logx - 1 + C
12logx + 1 + C
∫dx4sin2x + 3cos2x
34tan-12tanx3 + C
123tan-1tanx3 + C
23tan-12tanx3 + C
123tan-12tanx3 + C
∫secxdxcos2x is equal to
2sin-1tanx
tan-1tanx2 + C
sin-1tanx
32tan-1tanx3 + C
∫exxxlogx + 1dx is equal to
exx + C
xexlogx + C
exlogx + C
x(ex + logx) + C
∫1 + logx1 + x logx2dx is equal to
11 + xlogx + C
11 + logx + C
- 11 + xlogx + C
log11 + logx + C
∫1 - tan2xdx is equal to
tanx + C
secx + C
2x - secx + C
2x - tanx + C
The value of ∫06x - 3dx is equal to
6
0
12
9
If f(x) = ∫2xsinxcost3dt, then f'(x) is equal to
cossin3xcosx - 2cos8x3
sinsin3xsinx - 2sin8x3
coscos3xcosx - 2cosx3
cossin3x - cos8x3