∫5 + x2x4dx is equal to
1151 + 5x232 + C
- 1151 + 1x232 + C
- 1151 + 5x232
1151 + 1x232
The value of ∫01dxex + e is equal to
1elog1 + e2
log1 + e2
1elog1 + e
log21 + e
The value of the integral ∫1e1 + logx3xdx is equal to
14
12
34
e
The value of the integtral ∫01x31 + x8dx is equal to
π8
π4
π16
π6
The value of ∫24logttdt is
12log22
52log22
32log22
log22
∫1 + xexcotxexdx is equal to
logcosxex + C
logcotxex + C
logsecxe- x + C
logsecxex + C
∫x51 + x3dx is equal to
291 + x2x3 - 9 + C
29x3 - 91 + x2 + C
291 + x3 + C
291 + x2x3 - 2 + C
D.
Let I = ∫x51 + x3dx = ∫x3 . x21 + x3dxPut 1 + x3 = t2⇒ 3x2dx = 2tdt⇒ x2dx = 23tdtAlso, x3 = t2 - 1∴ I = 23∫t2 - 1tt dt = 23∫t2 - 1dt = 23t33 - t + C = 23tt23 - 1 + C⇒ I = 29tt2 - 3 + CPut t = 1 + x3
⇒ I = 291 + x2x3 - 2 + C
∫4ex2ex - 5e- xdx is equal to
4logex - 5 + C
14loge2x - 5 + C
log2e2x - 5e- x + C
log2e2x - 5 + C
∫x + 1x2dx is equal to
x22 + 2x + logx + C
x22 + 2 + logx + C
x22 + x + logx + C
x22 + 2x + 2logx + C
∫xn - 1x2n + a2dx is equal to
1natan-1xna + C
nasin-1xna + C
nacot-1xna + C