∫x + 12xx2 + 1dx is equal to
logxx2 + 1 + C
logx + C
logx + 2tan-1x + C
log11 + x2 + C
∫1xlogx2dx is equal to
12loglogx2 + C
loglogx2 + C
2loglogx2 + C
14loglogx2 + C
∫011x2 + 16x2 + 25dx is equal to
1514tan-114 - 15tan-115
1914tan-114 - 15tan-115
1414tan-114 - 15tan-115
1915tan-114 - 14tan-115
∫- 11x1 - x1 + xdx is equal to
13
23
1
0
The value of ∫- ππsin2x1 + 7xdx is
7x
π
π2
2π
∫0π22x3sinx2dx is equal to
121 + π4
121 - π4
12π2 - 1
121 - π2
∫secxmtan3x + tanxdx is equal to
secm + 2x + C
tanm + 2x + C
secm + 2xm + 2 + C
tanm + 2xm + 2 + C
∫17sinx7 + 10dx is equal to
17cosx7 + 10 + C
- 17cosx7 + 10dx
- cosx7 + 10 + C
- 7cosx7 + 10 + C
C.
Let I = ∫17sinx7 + 10dx = 17∫sinx7 + 10dx = 17- cosx7 + 1017 = - cosx7 + 10 + C
∫x - ax - xx + adx is equal to
logx + ax + C
alogx + ax + C
alogxx + a + C
∫x4ex5cosex5dx is equal to
13sinex5 + C
14sinex5 + C
15sinex5 + C
sinex5 + C