If ∫0x2ftdt = xcosπx, then the value of f(4

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

591.

sin2xsin3xsin5xdx is equal to :

  • 15logesin5x - 13logesin3x + c

  • 13logesin3x - 15logesin5x

  • 13logesin3x + 15logesin5x

  • - 12cos2x + 13logesin3x


592.

exlogsinx + cotxdx is equal to

  • excot(x) + c

  • exlog(sin(x)) + c

  • exlog(sin(x)) + tan(x) + c

  • ex + sin(x) + c


593.

- 1010loga + xa - xdx is equal to :

  • 0

  • - 2log(a + 10)

  • 2loga + 10a - 10

  • 2log(a + 10)


594.

Define f(x) = 0xsintdt, x  0, Then :

  • f is increasing only in the interval 0, π2

  • f is decreasing in the interval 0, π

  • f attains maximum at x = π2

  • f attains minimum at x = π


Advertisement
595.

Let f(x) = sin2πx1 + π2. Then, fx + f- xdx is equal to :

  • 0

  • x + c

  • x2 - cosπx2π + c

  • x2 - sin2πx4π + c


596.

Let f(x) = x - [x], for every real x, where [x] is the greatest integer less than or equal to x. Then, - 11fxdx is :

  • 1

  • 2

  • 3

  • 0


Advertisement

597.

If 0x2ftdt = xcosπx, then the value of f(4) is :

  • 1

  • 14

  • - 1

  • - 14


B.

14

0x2ftdt = xcosπxOn differentiating both sides, we get2xfx2 = - xsinπxπ + cosπx x2fx2 = - xsinπxx2π + cosπxx2 f4 = f22 = 14


Advertisement
598.

If f(x) = 2 - xcosx2 + xcosx and g(x)= logex, (x > 0) then the value of integral - π4π4g(f(x))dx is :

  • loge(3)

  • loge(1)

  • loge(2)

  • logee


Advertisement
599.

sin5x2sinx2dx is equal to :

(where c is a constant of integration)

  • x + 2sinx + 2sin2x + c

  • 2x + sinx + sin2x + c

  • 2x + sin2x + 2sinx + c

  • x + sin2x + 2sinx + c


600.

If dxx31 + x623 = xf(x)(1 +x6)13 + C where C is a constant of integration, then the function f(x) is equal to :

  • 12x2

  • - 16x3

  • 3x2

  • - 12x3


Advertisement