∫0π2sinx - cosx1 - sinx . cosxdx is equal to
0
π2
π4
π
A.
Let I = ∫0π2sinx - cosx1 - sinx . cosxdx ...iOn putting x = π2 - x in Eq. (i), we getI = ∫0π2sinπ2 - x - cosπ2 - x1 - sinπ2 - x . cosπ2 - xdx = ∫0π2cosx - sinx1 - sinx . cosxdx = - ∫0π2sinx - cosx1 - sinx . cosxdx ...iiOn adding Eqs. (i) and (ii), we get 2I = ∫0π20 dx = 0⇒ I = 0
If ∫01tan-1xdx = p, then the value of ∫01tan-11 - x1 + xdx is
π4 + p
π4 - p
1 + p
1 - p
If f(x) = x , g(x) = sin(x), then ∫fgxdx is equal to
sin(x) + c
- cos(x) + c
x22 + c
x sin(x) + c
The value of ∫0π2logcscxdx is
π2log2
πlog2
- π2log2
2πlog2
∫etanxsec2x + sec3xsinxdx is equal to
secxetanx + c
tanxetanx + c
etanx + tanx + c
1 + tanxetanx + c
∫116x2 + 9dx is equal to
13tan-14x3 + c
14tan-14x3 + c
112tan-14x3 + c
112tan-13x4 + c
The value of ∫4711 - x2x2 + 11 - x2dx is
1
1/2
3/2
∫tanx + cotxdx
2tan-1tanxtanx + C
2tan-1tanx - 12tanx + C
tanx2 . tan-1cotx + 12tanx + C
∫x2xsinx + cosx2dx is equal to
sinx + cosxxsinx + cosx + C
xsinx - cosxxsinx + cosx + C
sinx - xcosxxsinx + cosx + C
None of these
∫0xxdx1 + cosαsinx, 0 < α < π is equal to
παsinα
παcosα
πα1 + sinα
πα1 - cosα