If ∫0π2logcosxdx = π2log12, then &i

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

681.

01xtan-1xdx =

  • π4 + 12

  • π4 - 12

  • 12 - π4

  • - π4 - 12


682.

If 19 - 16x2dx = αsin-1βx + c, then α + 1β =

  • 1

  • 712

  • 1912

  • 912


Advertisement

683.

If 0π2logcosxdx = π2log12, then 0π2logsecxdx =

  • π2log12

  • 1 - π2log12

  • 1 + π2log12

  • π2log2


D.

π2log2

Given, 0π2logcosxdx = π2log12Let  I = 0π2logsecxdx = 0π2log1cosxdx        = 0π2logcosx- 1dx = 0π2logcosxdx       = - 0π2logcosxdx      logm- n = - nlogm       = - π2log12       log1a = - loga       = π2log2


Advertisement
684.

1x2 + 4x2 + 9dx = Atan-1x2 + Btan-1x3 + C, then A - B =

  • 16

  • 130

  • - 130

  • - 16


Advertisement
685.

If x - 5x - 7dx = Ax2 - 12x +35 + logx - 6 + x2 - 12x + 35 + C, then A =

  • - 1

  • 12

  • - 12

  • 1


686.

03xdx = ..., where [x] is greatest integer function

  • 3

  • 0

  • 2

  • 1


687.

sec8xcscxdx =

  • sec8x8 + c

  • sec7x7 + c

  • sec6x6 + c

  • sec9x9 + c


688.

The tangent to the graph of a continuous function y = f(x) at the point with abscissa x = a forms with the X-axis an angle of π3 and at the point with abscissa x = b an angle of π4, then what the value of integral abf'x + f''xdx

(where f'(x) the derivative off w.r.t. xwhich is assumed to be continuous and similarly f"(x) the double derivative of f w.r.t. x)

  • eb3ea

  • eb - 3ea

  • eb - 3ea

  • - eb - 3ea


Advertisement
689.

The point of inflection of the function y = 0xt2 - 3t + 2dt is

  • 32, 34

  • - 32, - 34

  • - 12, - 32

  • 12, 32


690.

The value of integral dxxx2 - a2

  • c - 1asin-1ax

  • c - 1acos-1ax

  • sin-1ax + c

  • c + 1asin-1ax


Advertisement