∫π6π3sin3xsin3x + cos3xdx is equal to
π2
π3
π12
π6
If [x] is the greatest integer function not greater than x, then ∫011xdx is equal to
45
66
35
55
If n ∈ N and In = ∫logxndx, then In + nIn - 1 is equal to
logxn + 1n + 1
xlogxn + C
logxn - 1
logxnn
∫cosn - 1xsinn + 1xdx where, n ≠ 0 is equal to
cotnxn + C
- cotn - 1xn - 1 + C
- cotnxn + C
cotn - 1xn - 1 + C
∫x - 1exx + 13dx is equal to
exx + 1 + C
exx + 12 + C
exx + 13 + C
xexx + 1 + C
If I1 = ∫0π2xsinxdx, I2 = ∫0π2xcosxdx, then whi ch one f the followin is true ?
I1 = I2
I1 + I2 = 0
I1 = π2 . I2
I1 + I2 = π2
The value of ∫- 12xxdx, is
0
1
2
3
∫0πcos4xcos4x + sin4xdx is equal to
π4
π8
π
If f(x) = fπ + e - x and ∫eπfxdx = 2e + π, then ∫eπxf(x)dx is equal to
π - e
π + e2
π - e2
If linear function f(x) and g(x) satisfy ∫3x - 1cosx + 1 - 2xsinxdx = fxcosx + g(x)sinx + C, then
f(x) = 3(x - 1)
f(x) = 3x - 5
g(x) = 3(x - 1)
g(x) = 3 + x
C.
Given, fxcosx + g(x)sinx + C∫3x - 1cosx + 1 - 2xsinxdx= ∫3x - 1IcosxII + ∫1 - 2xIsinxIIdx= 3x - 1sinx - ∫3sinxdx - 1 - 2xcosx + ∫- 2cosxdx ∵ using integration by parts= 3x - 1sinx + 3cosx - 1 - 2xcosx - 2sinx + C= 3x - 1 - 2sinx + 3 - 1 + 2xcosx + C⇒ fxcosx + gxsinx + C = 3x - 1sinx + 2x + 1cosx + COn comparing the coefficients of cos(x) and sin(x), we getfx = 2x + 1 and gx = 3x - 1