If f(y) = ey, g(y) = y, y > 0 and F(t) = ∫0tft -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

831.

cos2x - 1cos2x + 1dx is equal to

  • tanx - x + c

  • x + tanx + c

  • x - tanx + c

  • - x - cotx + c


832.

Suppose f is such that f( - x) = - f(x), for every real x and 01fxdx = 5, then - 10ftdt is equal to

  • 10

  • 5

  • 0

  • - 5


Advertisement

833.

If f(y) = ey, g(y) = y, y > 0 and F(t) = 0tft - y . gydy, then 

  • F(t) = 1 - e- t(1 + t)

  • F(t) = et - (1 + t)

  • F(t) = tet

  • F(t) = te- t


B.

F(t) = et - (1 + t)

Given, fy = ey and gy = yand     Ft = 0tft - ygydy                 = 0tet - y . y dy                = et0t- ye- y0t + 0te - ydy                = et- te- t - e- y0t                = et- te- t - e- t + e0                = et- te- t - e- t + 1                = - t - 1 + et                = et - t + 1


Advertisement
834.

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x2. Then, the value of the integeral 01fxgxdx is

  • e - e22 - 52

  • e + e22 - 32

  • e - e22 - 32

  • e + e22 + 52


Advertisement
835.

- 10dxx2 + 2x + 2 is equal to

  • 0

  • π4

  • π2

  • - π4


836.

The value of f(x) is given only at x = 0, 13, 23 wich of the following can be used to evaluate 01fxdx approximately

  • Trapezoidal rule

  • Simpson's rule

  • Trapezoidal as well as Simpson's rule

  • None of the above


837.

If f(x) = ex1 + ex, I1 = f- afaxgx1 - xdx and I2 = f- afagx1 - xdx, the value of I2I1 is

  • 2

  • - 3

  • - 1

  • 1


838.

0afxdx is equal to

  • 0afa - xdx

  • 0afx - adx

  • 0af2a - xdx

  • 0afx + 2adx


Advertisement
839.

sin4xdx is equal to

  • 183x + sin4x4 - 4sin2x2 + c

  • 183x + sin4x4 + 4sin2x2 + c

  • 143x + sin4x4 - 4cos2x2 + c

  • 183x + sin4x4 + 4cos4x2 + c


840.

logxdx is equal to

  • x + xlogx + c

  • xlogx - x +c

  • x2logx +c

  • 1xlogx + xc


Advertisement