The value of limn→∞∑r = 1nr3r4 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

121.

The limit of xsine1x as x  0

  • is equal to 0

  • is equal to 1

  • is equal to e2

  • does not exist


122.

The limits of n = 11000- 1nxn as x  

  • does not exist

  • exists and equals to 0

  • exists and approaches to + 

  • exists and approaches to - 


123.

If f(x) = ex(x - 2)2, then

  • f is increasing in (- , 0) and (2, ) and decreasing in (0, 2).

  • f is increasing in (- , 0) and decreasing in (0, )

  • f is increasing in (2, ) and decreasing in (- , 0).

  • f is increasing in (0, 2) and decreasing in (- , 0) and (2, )


124.

limx0πx - 11 + x - 1

  • does not exist

  • equals loge(π2)

  • equals 1

  • lies between 10 and 11


Advertisement
125.

The value of limn n!1nn

  • 1

  • 1e2

  • 12e

  • 1e


126.

The approximate value of 335 correct to 4 decimal places is

  • 2.0000

  • 2.1001

  • 2.0125

  • 2.0500


Advertisement

127.

The value of limnr = 1nr3r4 + n4 is

  • 12loge12

  • 14loge12

  • 14loge2

  • 12loge2


C.

14loge2

limnr = 1nr3r4 + n4= limnr = 1nn3rn3n4rn4 + 1= 01x31 + x4dx = 14loge1 + x401= 14loge2 - 0 = 14loge2


Advertisement
128.

The value of limx1x + x2 + ... + xn - nx - 1

  • n

  • n + 12

  • nn + 12

  • nn - 12


Advertisement
129.

limx0sinπsin2xx2 is equal to

  • π2

  • 3π

  • 2π

  • π


 Multiple Choice QuestionsShort Answer Type

130.

If N = n!(n n  N, n > 2, then find

limNlog2N- 1 + log3N- 1 + ... + lognN- 1


Advertisement