Show that the points whose position vectors are given by  are

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

51. Find a vector equation of the line through the points A (3, 4, – 7) and B (1, – 1, 6).
103 Views

52. Find the vector equation for the line passing through the points (– 1, 0, 2) and (3, 4, 6).
73 Views

53. Find the vector and cartesian equations of the line that passes through the origin and (5,- 2, 3).
78 Views

54. Find the vector and the cartesian equations of the line that passes through the points (3, – 2, – 5), (3, – 2, 6).
91 Views

Advertisement
55. Find the vector equation of line joining the points whose vectors are 2 space straight i with hat on top minus straight j with hat on top plus straight k with hat on top space space and space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top.
78 Views

56. If the points (–1, 3, 2), (– 4, 2, –2) and (5, 5, λ) are collinear, then find the value of λ.
95 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

57. Show that the points whose position vectors are given by 
2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus space 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space 5 space straight i with hat on top space plus space 5 space straight k with hat on top are collinear. 


Given points have position vectors as
   2 straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus space 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space 5 space straight i with hat on top space plus space 5 space straight k with hat on top.
∴ points are (2, 1, 3), (– 4, 3, – 1), (5, 0, 5).
The equations of straight lines through the points (2, 1, 3) and (– 4, 3, – 1) are
    fraction numerator straight x minus 2 over denominator negative 4 minus 2 end fraction space equals space fraction numerator straight y minus 1 over denominator 3 minus 1 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 1 minus 3 end fraction space space space or space space fraction numerator straight x minus 2 over denominator negative 6 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z minus 3 over denominator negative 4 end fraction

or     fraction numerator straight x minus 2 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator negative 1 end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction

The points (5, 0, 5) will lie on it

 if fraction numerator 5 minus 2 over denominator 3 end fraction space equals space fraction numerator 0 minus 1 over denominator negative 1 end fraction space equals space fraction numerator 5 minus 3 over denominator 2 end fraction
i.e.. if 1 = 1 = 1, which is true.
∴   the points (2, 1, 3), (– 4, 3, – 1), (5, 0, 5) are collinear
∴ points with position vectors 2 straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top comma space space minus 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space 5 space straight i with hat on top space plus space 5 space straight k with hat on top are collinear.
Another Method:
Let straight a with rightwards arrow on top space equals space 2 straight i with hat on top space plus space straight j with hat on top space plus space 3 straight k with hat on top comma space space straight b with rightwards arrow on top space equals space minus 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 5 space straight k with hat on top.
The equation of line through two points with positions vectors straight a with rightwards arrow on top space and space straight b with rightwards arrow on top is straight r with rightwards arrow on top space equals space straight a with rightwards arrow on top plus straight lambda open parentheses straight b with rightwards arrow on top minus straight a with rightwards arrow on top close parentheses
or space space straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 4 space straight i with hat on top space plus space 3 space straight j with hat on top space minus space straight k with hat on top space minus space 2 space straight i with hat on top space minus space straight j with hat on top space minus space space 3 space straight k with hat on top close parentheses
or space space straight r with rightwards arrow on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 6 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses
Now the point straight c with rightwards arrow on top space equals space 5 space straight i with hat on top space plus space 5 space straight k with hat on top will lie on it
 if 5 space straight i with hat on top space plus space 5 space straight k with hat on top space equals space open parentheses 2 space straight i with hat on top space plus space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses space plus space straight lambda space open parentheses negative 6 space straight i with hat on top space plus space 2 space straight j with hat on top space minus space 4 space straight k with hat on top close parentheses
i.e.,  if 3 straight i with hat on top space minus space straight j with hat on top space plus space 2 space straight k with hat on top space equals space minus 6 space straight lambda space straight i with hat on top space plus space 2 space straight lambda space straight j with hat on top space plus space 4 space straight lambda space straight k with hat on top
i.e., if 3 equals negative 6 straight lambda comma space space minus 1 space equals space 2 straight lambda comma space space space 2 space equals space minus space 4 space straight lambda
i.e., if  straight lambda space equals space minus 1 half
therefore  for straight lambda space equals space minus 1 half comma space space space given space points space are space collinear. space

121 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

58.

Show that the point whose position vectors are given by negative 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space 5 space straight k with hat on top comma space space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top space space and space space 7 straight i with hat on top space minus space straight k with hat on top are collinear. 

78 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

59. Find the coordinates of the point where the line through A(3, 4, 1) and B (5, 1, 6) crosses the x y-plane.
82 Views

60. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane.
90 Views

Advertisement