Given p→ = 3i^ + 2j^ + 4k^,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

531.

If the vectors a = i^ +aj^ +a2k^b= i^ +bj^ +b2k^ and c = i^ +cj^ +c2k^ are three non-coplanar vectors and aa21 + a3bb21 + b3cc21 + c3 = 0, then the value of abc is

  • 0

  • 1

  • 2

  • - 1


532.

Let a = 2i^ - j^ + k^b = i^ + 2j^ - k^ and c = i^ + j^ - 2k^  be three vectors. A vector in the plane of b and c whose projection on a is magnitude 23, is

  • 2i^ + 3j^ - 3k^

  • 2i^ + 3j^ + 3k^

  • 2i^ - 5j^ + 5k^

  • 2i^ + j^ + 5k^


533.

If the constant forces 2i^ - 5j^ + 6k^ and - i^ + 2j^ - k^act on a particle due to which it is displaced from a point A (4,- 3, - 2) to a point B (6, 1,- 3), then the work done by the forces is

  • 15 unit

  • 9 unit

  • - 15 unit

  • - 9 unit


534.

If a . i^ = 4, then a × j^ . 2j^ - 3k^ is equal to

  • 12

  • 2

  • 0

  • - 12


Advertisement
535.

a × a × a × b is equal to

  • a × a . b × a

  • a . b × a - ba × b

  • a . a × ba

  • a . a b × a


536.

If the vectors i^ - 3j^ + 2k^- i^ + 2j^ represents the diagonals of a parallelogram, then its area will be

  • 21

  • 212

  • 221

  • 214


537.

The position vector of the points A, B, C are 2i^ + j^ - k^3i^ - 2j^ + k^ and i^ + 4j^ - 3k^ respectively. These points

  • form an isosceles triangle

  • form a right angled triangle

  • are collinear

  • form a scalene triangle


538.

If a = 2, b = 3 and a, b are mutually perpendicular, then the area of the triangle whose vertices are 0, a + b, a - b is

  • 5

  • 1

  • 6

  • 8


Advertisement
Advertisement

539.

Given p = 3i^ +2j^ + 4k^, a = i^ +j^c = i^ +k^ and p = xa + yb + zc then x, y, z are respectively

  • 32, 12, 52

  • 12, 32, 52

  • 52, 32, 12

  • 12, 52, 32


B.

12, 32, 52

p = xa + yb + zc3i^ +2j^ + 4k^ = xi^ +j^ + yj^ + k^ + zi^ +k^ 3i^ +2j^ + 4k^ = x + zi^ + x + yj^ + y + zk^On comparing both sides the coefficients of i^, j^, k^, we getx + z = 3    ...ix + y = 2   ...iiy + z = 4  ...iiiOn solving Eqs. (i), (ii) and (iii), we get x = 12, y = 32, z = 52


Advertisement
540.

If 2a + 3b - 5c = 0, then ratio in which c divides AB is

  • 3 : 2 internally

  • 3 : 2 externally

  • 2 : 3 internally

  • 2 : 3 externally


Advertisement