Three forces each of magnitude F are applied along the edges of a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

551.

If a = i^ + j^ - 2k^, b = 2i^ - j^ + k^ and c = 3i^ - k^ and c = ma + nb, then m + n is equal to

  • 0

  • 1

  • 2

  • - 1


552.

M and N are the mid-points of the diagonals AC and BO respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to

  • 2MN

  • 2NM

  • 4MN

  • 4NM


553.

If a = i^ + j^ + k^b = 2i^ + λj^ + k^c = i^ - j^ + 4k^ and a . b × c = 10, then λ is equal to

  • 6

  • 7

  • 9

  • 10


554.

Let PQRS be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS + QR =

  • 3 MN

  • 4 MN

  • 2 MN

  • 2 NM


Advertisement
555.

If vector r with dc's l, m, n is equally inclined to the coordinate axes, then the total number of such vectors is

  • 4

  • 6

  • 8

  • 2


556.

If a, b, c are three vectors such that [a b c] = 5, then the value of [a x b, b x c, c x a] is

  • 15

  • 25

  • 20

  • 10


Advertisement

557.

Three forces each of magnitude F are applied along the edges of a regular hexagon as shown in the figure. Each side of hexagon is a. What is the resultant moment (torque) of these three forces about centre O ?

  • 332aF

  • 12aF

  • 3aF

  • 32aF


D.

32aF

We know that, moment force = rF

In right angled OAB,     OG2 = OA2 - AG2 OG2 = a2 - a22                 OAB is an equilateral triangle with side 'a', then                               AG = AB2 = a2

 OG2 = 34a2   OG = 32aMoment of force AB about 'O' Is (OG)ABi . e., 32a . FMoment of force DC about 'O' is (OG)CD, i e., 32a- FMoment of force DE about 'O' is (OG)DE, i.e., 32aFResultant moment of force about 'O'           = 32aF - 32aF + 32aF           = 32aF


Advertisement
558.

The coordinates of a moving point particle in a plane at time t is given by x = a(t + sin(t)), y = a(1 - cos(t)). The magnitude of acceleration of the particle is acceleration ofthe particle is

  • 2a

  • 32a

  • a

  • 3a


Advertisement
559.

Two vectors A = 3 and B = 4 are perpendicular. Resultant of both these vectors is R. The projection of the vector B on the vector R is

  • 5

  • 1.25

  • 3.2

  • 2.4


560.

A vector R is given by R = A x (B x C), which of the following is true ?

  • R must be perpendicular to 8

  • R is parallel to A

  • R must be parallel to B

  • None of these


Advertisement