Forces ofmagnitudes 3, P, 5, 10 and Q are respectively acting alo

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

571.

The points, whose position vectors are 60i + 3j, 40i - 8j and ai - 52j collinear, if

  • a = 40

  • a = - 40

  • a = 20

  • a = - 20


572.

In a ABC, AB = ri + j, AC = si - j if the area of triangle is of unit magnitude, then

  • r - s = 2

  • r + s = 1

  • r + s = 2

  • r - s = 1


573.

If a = i - j + k, a b = 0, a x b = c, where c = - 2i - j + k, then b 1s equal to

  • (1, 0, - 1)

  • (0, 1, 1)

  • (- 1, - 1, 0)

  • (- 1, 0, 1)


574.

The resultant of P and Q is R. If Q is doubled, R is also doubled and if Q is reversed, R is again doubled. Then, P2 : Q2 : R2 gven by

  • 2 2 3

  • 3 2 2

  • 2 3 2

  • 2 3 1


Advertisement
Advertisement

575.

Forces ofmagnitudes 3, P, 5, 10 and Q are respectively acting along the sides AB, BC, CD, AD and the diagonal CA of a rectangle ABCD, where AB = 4m and BC = 3m. Ifthe resultant is a single force along the other diagonal BD, then P, Q and the resultant are

  • 4, 10512, 121112

  • 5, 6, 7

  • 312, 8, 912

  • None of the above


A.

4, 10512, 121112

ABCD is a rectangle in which AB = 4m and BC =3m

Then, tanθ = BCAB = 34

The forces 3, P, 5, 10 and Q newtons have the resultant R Newton as shown in the figure.

Rcosθ = Qcosθ + 5 - 3             = Qcosθ + 2                   ...iand Rsinθ = P + 10 - Qsinθ   ...iiand Q ABsinθ + 5BC = 10 . AB        sinθ = 35 and cosθ = 45 125Q = 40 - 15 = 25      Q = 12512 = 10512 newtonThen, find R from Eq. (i) and P from Eq. (ii)    4R5 = 12512 × 45 + 2 4R = 1253 + 10 = 1553   R = 15512 = 121112and 15512 × 35 = P + 10 - 12512 × 35           1554 = 5P + 50 - 1254              5P = 1554 + 1254 - 50             5P = 2804 - 50 = 70 - 50 = 20               P = 4Hence, option (a) 4, 10512, 121112 is correct.


Advertisement
576.

Three forces of magnitudes 1, 2 and 3 dynes meet in a point and act along diagonals of three adjacent faces of a cube. The resultant force is

  • 114 dynes

  • 6 dynes

  • 5 dynes

  • None of the above


577.

The vectors AB = 3i + 5j + 4k and AC = 5i - 5j + 2k are side of a ABC. The length ofthe median through A is

  • 13 units

  • 25 units

  • 5 units

  • 10 units


578.

Let a = 2i + j + k, b = i + 2j - 1, and a unit vector c be caplanar. If c is perpendicular to a, then c is

  • 12- j  + k

  • 13- i - j - k

  • 15i - 2j

  • 13i - j  - k


Advertisement
579.

The area of a parallelogram whose adjacent sides are represented by the vectors a = - i^ - 2j^ - 3k^ and b = - i^ + 2j^ - 3k^ is

  • 14

  • 6

  • 4936

  • 410


580.

The resultant of two forces of 3 kg-wt and 4 kg-wt which are inclined at 30° angles to each other is

  • 25 + 63

  • 25 + 123

  • 37

  • 13


Advertisement