If a→, b→, c→ are the positton vect

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

581.

Let two like parallel forces are acting, at points A and B such that the force at A is double than the force at B. If C is the point of action ofthe resultant, then AC/BC is

  • 2

  • 1/2

  • 1/3

  • 1/4


582.

Let a, b and c represent vector quantities. Which of the following points are collinear?

  • a - 2b + 3c, 2a + 3b - 4c, - 7b + 10c

  • - 2a + 3b + 5c, a + 2b + 3c, 7a - c

  • a, b, 3a - 2b

  • a + b - c, 3a - 4c, 2a + b + 3c


583.

The values of λ and μ for which the vectors a = 2i^ + λj^ - k^ is perpendicular to the vector b = 3i^ + j^ + μk^ with a = b are

  • λ = 4112, μ = 3112

  • λ = 4112, μ = - 3112

  • λ = - 4112, μ = 3112

  • None of these


584.

At a point the addition of two active force is 18 N. If the magnitude of resultant is 12 N and meet at right angle. Then, magnitude of forces are

  • 5 N, 13 N

  • 6N, 12 N

  • 8 N, 10 N

  • None of these


Advertisement
585.

The angle between two active forces P + Q and P  - Q is 2α. If their resultant make angle θ with bisector of angle. Then

  • Pcosθ = Qcosα

  • Ptanθ = Qtanα

  • Qcosθ = Pcosα

  • Qtanθ = Ptanα


586.

The vector a is equal to

  • a . i^i^ + a . j^j^ + a . k^k^

  • a . j^i^ + a . k^j^ + a . i^k^

  • a . k^i^ + a . i^j^ + a . j^k^

  • a . ai^ + j^ + k^


Advertisement

587.

If a, b, c are the positton vectors of the vertices f an equilateral triangle whose orthocentre is at the origin, then

  • a + b + c = 0

  • a2 = b2 + c2

  • a + b = c

  • None of these


A.

a + b + c = 0

The position vector of the centroid of the triangle is a + b + c3. Since, the triangle is an equilateral, therefore the orthocentre coincides with the centroid and hence

 a + b + c3 = 0  a + b + c = 0


Advertisement
588.

A, B, C are three non-zero vectors; no two of them are parallel. If A + B is collinear to C and B + C is collinear to A, then A + B + C is equal to

  • A

  • B

  • C

  • 0


Advertisement
589.

Let a = 2i^ + j^ - 2k^ and b = i^ + j^. If c is vector such that a . c = c c - a = 22 the angle between a × b and c is 30° is, then a × b × c is equal to

  • 23

  • 32

  • 2

  • 3


590.

If the vectors i^ - 2j^ + 3k^, - 2i^ + 3j^ - 4k^, λi^ - j^ + 2k^ are linearly dependent, then the value of λ is equal to

  • 0

  • 1

  • 2

  • 3


Advertisement