limx→∞x + 5x + 2x + 3 equals
e
e2
e3
e5
limx→0 tanx - sinxx2 = ?
0
1
12
- 12
If f(x) = x + sinx for x ∈ - π2, π2, then its left hand derivative at x = 0 is
- 1
- 2
- 3
If u = ux, y = siny + ax - y + ax2, then it implies
uxx = a2 . uyy
uyy = a2uxx
uxx = - a2 . uyy
uyy = - a2uxx
limx→∞x + 6x + 1x + 4 = ?
e4
e6
The coordinates of the point P on the curve x = aθ + sinθ, y = a1 - cosθ, where the tangent is inclined at an angle π4 to x-axis, are
aπ4 - 1, a
aπ2 + 1, a
aπ2, a
(a, a)
If fx = xtan-1x, then limx→1fx - f1x - 1 = ?
π + 34
π4
π + 14
π + 24
If gx = xx for x> 2, then limx→2 gx - g2x - 2 = ?
1/2
limx→π22x - πcosx = ?
5
limx→06x - 3x - 2x + 1x2 = ?
loge2loge3
loge5
loge6