The value of limn→∞ n!1nn | Limits and Derivatives

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

The limit of 1x1 + x - 1 + 1x2 as x  0

  • does not exist

  • is equal to 12

  • is equal to 0

  • is equal to 1


22.

The limit of xsine1x as x  0

  • is equal to 0

  • is equal to 1

  • is equal to e2

  • does not exist


23.

The limits of n = 11000- 1nxn as x  

  • does not exist

  • exists and equals to 0

  • exists and approaches to + 

  • exists and approaches to - 


24.

If f(x) = ex(x - 2)2, then

  • f is increasing in (- , 0) and (2, ) and decreasing in (0, 2).

  • f is increasing in (- , 0) and decreasing in (0, )

  • f is increasing in (2, ) and decreasing in (- , 0).

  • f is increasing in (0, 2) and decreasing in (- , 0) and (2, )


Advertisement
25.

limx0πx - 11 + x - 1

  • does not exist

  • equals loge(π2)

  • equals 1

  • lies between 10 and 11


Advertisement

26.

The value of limn n!1nn

  • 1

  • 1e2

  • 12e

  • 1e


D.

1e

         limxn!1nn = limnn!nn1nWe have,          n!nn = 1 . 2 . 3 ... nn . n . n ... n           n!nn1n = 1n . 2n . 3n ... rn ... nn1n limnn!nn1n = limn1n . 2n . 3n ... rn ... nn1n

Let                   A = limnn!nn1nThen,               A = limn1n . 2n . 3n ... rn ... nn1n

             logA = 1nlimnlogrn = 01logxdx                            = xlogx - 1x . x dx01Integrating by parts                           = x logx - x01                           = - 1                   A = e- 1 = 1e


Advertisement
27.

The approximate value of 335 correct to 4 decimal places is

  • 2.0000

  • 2.1001

  • 2.0125

  • 2.0500


28.

The value of limnr = 1nr3r4 + n4 is

  • 12loge12

  • 14loge12

  • 14loge2

  • 12loge2


Advertisement
29.

The value of limx1x + x2 + ... + xn - nx - 1

  • n

  • n + 12

  • nn + 12

  • nn - 12


30.

limx0sinπsin2xx2 is equal to

  • π2

  • 3π

  • 2π

  • π


Advertisement