If N = n!(n n ∈ N, n > 2, then findlimN→∞log2N- 1 + log3N- 1 + ... + lognN- 1 | Limits and Derivatives

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

31.

If N = n!(n n  N, n > 2, then find

limNlog2N- 1 + log3N- 1 + ... + lognN- 1


limNlog2N- 1 + log3N- 1 + ... + lognN- 1= limNlogN2 + logN3 + ... + logNn                   logab- 1 = logba= limNlogNn! = limNlogNN = limN1 = 1                   n! = N


Advertisement
32.

Use the formula limx0ax - 1x = logea to compute limx02x - 11 + x - 1


 Multiple Choice QuestionsMultiple Choice Questions

33.

The value of limx0sinx + cosx - 1x2

  • 1

  • 12

  • - 12

  • 0


34.

The value of limx01 + 5x21 + 3x21x2

  • e2

  • e

  • 1e

  • 1e2


Advertisement
35.

If f(5)=7 and f'(5)=7 then limx5xf(5) - 5fxx - 5 is given by

  • 35

  • - 35

  • 28

  • - 28


36.

The value of f(0) so that the function 1 - cos1 - cosxx4 is continuous everywhere is

  • 12

  • 14

  • 16

  • 18


37.

limx0sinxx is equal to 

  • 1

  • 0

  • positive infinity

  • does not exist


38.

If y = tan-11 - sinx1 + sinx, then the value of dydx at x = π6 is

  • 12

  • 12

  • 1

  • - 1


Advertisement
39.

The value of the limit limx1sinex - 1 - 1logx

  • 0

  • e

  • 1e

  • 1


40.

Let f(x) = x + 3x + 1, then the value of limx- 3 - 0fx is

  • 0

  • does not exist

  • 12

  • - 12


Advertisement