Subject

Physics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.

 Multiple Choice QuestionsMultiple Choice Questions

1.

Let [ε0] denote the dimensional formula of the permittivity of vacuum. If M = mass, L = length, T = time and A = electric current, then

  • 0] = [M-1L-3T2A]

  • 0] = [M-1L-3T4A2]

  • 0] =[M-2L2T-1A-2]

  • 0] = [M-1L2T-1A2]


B.

0] = [M-1L-3T4A2]

From Coulomb's Law, F

straight F space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator straight q subscript 1 straight q subscript 2 over denominator straight R squared end fraction
straight epsilon subscript straight o space equals space fraction numerator straight q subscript 1 straight q subscript 2 over denominator 4 πFR squared end fraction

On Substituting the units, we get


straight epsilon subscript straight o space equals space fraction numerator straight C squared over denominator straight N minus straight m end fraction space equals space fraction numerator left square bracket AT right square bracket squared over denominator left square bracket MLT to the power of negative 2 end exponent right square bracket left square bracket straight L squared right square bracket end fraction space left parenthesis 4 straight pi space is space dimensionless right parenthesis
space equals space left square bracket straight M to the power of negative 1 end exponent straight L to the power of negative 3 end exponent straight T to the power of 4 straight A squared right square bracket

448 Views

2.

A uniform cylinder of length L and mass M having cross-sectional area A is suspended, with its length vertical, from a fixed point by a massless spring, such that it is half submerged in a liquid of density σ at the equilibrium position. The extension x0 of the spring when it is in equilibrium is

  • Mg over straight k
  • Mg over straight k open parentheses 1 minus LAσ over straight M close parentheses
  • Mg over straight k open parentheses 1 minus fraction numerator LAσ over denominator 2 straight M end fraction close parentheses
  • Mg over straight k open parentheses 1 plus LAσ over straight M close parentheses

C.

Mg over straight k open parentheses 1 minus fraction numerator LAσ over denominator 2 straight M end fraction close parentheses

At equilibrium ΣF = 0


kx subscript straight o space plus space open parentheses AL over 2 σg close parentheses minus Mg space equals 0
straight x subscript straight o space equals space Mg open square brackets 1 minus fraction numerator LAσ over denominator 2 straight M end fraction close square brackets


483 Views

3.

A metallic rod of length ‘l’ is tied to a string of length 2l and made to rotate with angular speed ω on a horizontal table with one end of the string fixed. If there is a vertical magnetic field ‘B’ in the region, the e.m.f. induced across the ends of the rod is

  • fraction numerator 2 Bωl cubed over denominator 2 end fraction
  • fraction numerator 3 Bωl cubed over denominator 2 end fraction
  • fraction numerator 4 Bωl squared over denominator 2 end fraction
  • fraction numerator 5 Bωl squared over denominator 2 end fraction

D.

fraction numerator 5 Bωl squared over denominator 2 end fraction


de space equals space straight B space left parenthesis ωx right parenthesis. dx
straight e space equals space Bω integral subscript 2 straight L end subscript superscript 3 straight L end superscript xdx
space equals fraction numerator 5 BωL squared over denominator 2 end fraction
1106 Views

4.

This question has Statement I and Statement II. Of the four choices given after the Statements, choose the
one that best describes the two Statements.
Statement – I: A point particle of mass m moving with speed v collides with stationary point particle of mass M. If the maximum energy loss possible is given as f open parentheses 1 half mv squared close parentheses comma space then space straight f space equals space open parentheses fraction numerator straight m over denominator straight M plus straight m end fraction close parentheses
Statement – II : Maximum energy loss occurs when the particles get stuck together as a result of the collision.

  • Statement – I is true, Statement – II is true, Statement – II is a correct explanation of Statement – I.

  • Statement – I is true, Statement – II is true, Statement – II is not a correct explanation of Statement – I.

  • Statement – I is true, Statement – II is false.

  • Statement – I is false, Statement – II is true 


D.

Statement – I is false, Statement – II is true 

Before collision, the mass is m and after collision, the mass is m+M
therefore, Maximum energy loss
fraction numerator straight p squared over denominator 2 straight m end fraction minus fraction numerator straight p squared over denominator 2 left parenthesis straight m plus straight M right parenthesis end fraction
space equals space fraction numerator straight p squared over denominator 2 straight m end fraction open square brackets fraction numerator begin display style straight m end style over denominator straight m plus straight M end fraction close square brackets space space space space
space space space open square brackets because KE space equals space fraction numerator straight p squared over denominator 2 straight m end fraction close square brackets
equals space 1 half mv squared open curly brackets fraction numerator straight m over denominator straight m plus straight M end fraction close curly brackets
open square brackets straight f space equals space fraction numerator straight m over denominator straight m plus straight M end fraction close square brackets

398 Views

5.

A projectile is given an initial velocity ofopen parentheses straight i with hat on top space plus 2 straight j with hat on top close parentheses straight m divided by straight s  where is along the ground and bold j with bold hat on top is along the vertical. If g = 10 m/s2, the equation of its trajectory is: 

  • y = x-5x2

  • y = 2x-5x2

  • 4y = 2x- 5x2

  • 4y = 2x-25x2


B.

y = 2x-5x2

Initial velocity, space straight V space equals space left parenthesis straight i with hat on top plus 2 straight j with hat on top right parenthesis space straight m divided by straight s
Magnitude of velocity,
straight v equals square root of left parenthesis 1 right parenthesis squared space plus left parenthesis 2 right parenthesis squared end root space equals space square root of 5 space straight m divided by straight s end root
the equation of trajectory of the projectile
straight y space equals space straight x space tan space straight theta space minus space fraction numerator gx squared over denominator 2 straight u squared end fraction left parenthesis 1 plus space tan squared straight theta right parenthesis
left square bracket because space tan space straight theta space equals space straight y over straight x space equals 2 over 1 space equals 2 right square bracket
straight y space equals space straight x.2 space minus space fraction numerator 10 left parenthesis straight x right parenthesis squared over denominator 2 left parenthesis square root of 5 right parenthesis squared end fraction left square bracket 1 plus left parenthesis 2 right parenthesis squared right square bracket
equals space 2 straight x minus fraction numerator 10 left parenthesis straight x squared right parenthesis over denominator 2 space straight x 5 end fraction left parenthesis 1 plus 4 right parenthesis space equals space 2 straight x minus 5 straight x squared

197 Views

6.

The above p-v diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of heat extracted from the source in a single cycle is

  • povo

  • open parentheses 13 over 2 close parentheses straight p subscript 0 straight v subscript 0
  • open parentheses 11 over 2 close parentheses straight p subscript straight o straight v subscript 0
  • 4povo


B.

open parentheses 13 over 2 close parentheses straight p subscript 0 straight v subscript 0

Heat is extracted from the source in path DA and AB is

space straight Q space equals space 3 over 2 straight R open parentheses fraction numerator straight P subscript 0 straight V subscript 0 over denominator straight R end fraction close parentheses space plus 5 over 2 straight R open parentheses fraction numerator begin display style 2 straight P subscript 0 straight V subscript 0 end style over denominator straight R end fraction close parentheses space equals space 13 over 2 straight P subscript 0 straight V subscript 0

565 Views

7.

The amplitude of a damped oscillator decreases to 0.9 times its original magnitude is 5s. In another 10s it will decrease to α times its original magnitude, where α equals

  • 0.7

  • 0.81

  • 0.729

  • 0.6


C.

0.729

Amplitude of damped oscillator
straight A space equals space straight A subscript 0 straight e to the power of negative fraction numerator bt over denominator 2 straight m end fraction end exponent
After space 5 straight s comma space space space 0.9 space straight A subscript straight o space equals space straight A subscript straight o straight e to the power of negative fraction numerator straight b left parenthesis 5 right parenthesis over denominator 2 straight m end fraction end exponent space space.. space left parenthesis straight i right parenthesis space
After space 10 space more space second comma
straight A space equals space straight A subscript straight o straight e to the power of negative straight b fraction numerator 15 over denominator 2 straight m end fraction end exponent
straight A space equals space straight A subscript straight o open parentheses straight e to the power of negative straight b fraction numerator 15 over denominator 2 straight m end fraction end exponent close parentheses cubed space space... space left parenthesis ii right parenthesis
From space Eqs. space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis comma
straight A space equals space 0.729 space straight A subscript straight o space equals space αA subscript 0
Hence comma space straight alpha space equals space 0.729

505 Views

8.

What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R?

  • 5GmM/6R

  • 2GmM/3R

  • GmM/2R

  • GmM/3R


A.

5GmM/6R

From conservation of energy,
Total energy at the planet = Total energy at the altitude
negative GMm over straight R space plus space left parenthesis KE right parenthesis subscript surface space equals space minus fraction numerator GMm over denominator 3 straight R end fraction space plus space 1 half mv subscript straight A superscript 2 space... space left parenthesis straight i right parenthesis
In its orbit the necessary centripetal force provided by gravitational force.
∴ therefore space fraction numerator mv subscript straight A superscript 2 over denominator left parenthesis straight R space plus 2 straight R right parenthesis end fraction space equals space fraction numerator GMm over denominator left parenthesis straight R space plus 2 straight R right parenthesis squared end fraction
straight v subscript straight A superscript 2 space equals space fraction numerator GM over denominator 3 straight R end fraction space... space left parenthesis ii right parenthesis
From space eq space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis space we space get
left parenthesis KE right parenthesis subscript surface space equals space 5 over 6 GMm over straight R

514 Views

9.

A sonometer wire of length 1.5 m is made of steel. The tension in it produces an elastic strain of 1 %. What is the fundamental frequency of steel if density and elasticity of steel are 7.7 × 103 kg/m3 and 2.2 × 1011N/m2 respectively?

  • 188.5 Hz

  • 178.2 Hz

  • 200.5 Hz

  • 770 Hz


B.

178.2 Hz

Fundamental space frequency space straight f space equals space fraction numerator 1 over denominator 2 l end fraction square root of straight T over straight mu end root
equals space fraction numerator 1 over denominator 2 l end fraction square root of straight T over Aρ end root
space equals equals space fraction numerator 1 over denominator 2 l end fraction square root of Stress over straight rho end root space equals fraction numerator 1 over denominator 2 space straight x 1.5 end fraction square root of fraction numerator 2.2 space straight x space 10 to the power of 11 space straight x space 10 to the power of negative 2 end exponent over denominator 7.7 space straight x space 10 cubed end fraction end root
515 Views

10.

A hoop of radius r and mass m rotating with an angular velocity ω0
is placed on a rough horizontal surface.The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases to slip?

  • 0/4

  • 0/3

  • 0/2

  • 0


C.

0/2

From conservation of angular momentum about any fixed point on the surfacemr squared straight omega subscript 0 space equals space 2 mr squared straight omega
therefore space straight omega space equals space straight omega subscript 0 over 2
therefore space straight V subscript CM space equals fraction numerator straight omega subscript 0 straight r over denominator 2 end fraction space

437 Views