In each of the following find the value of ‘k’, for which the points are collinear(7, –2), (5, 1), (3, k) - Zigya
Advertisement

In each of the following find the value of ‘k’, for which the points are collinear
(7, –2), (5, 1), (3, k)


Let the given points be A(7, -2), B(5, 1) and C(3, K)
Here, we have,
x1 = 7, y1 = -2
x2 = 5, y2 = 1
and    x3 = 3, y3 = K
Now, Area of ∆ABC

equals 1 half left square bracket straight x subscript 1 left parenthesis straight y subscript 2 minus straight y subscript 3 right parenthesis plus straight x subscript 2 left parenthesis straight y subscript 3 minus straight y subscript 1 right parenthesis plus straight x subscript 3 left parenthesis straight y subscript 1 minus straight y subscript 2 right parenthesis right square bracket
equals 1 half left square bracket 7 left parenthesis 1 minus straight k right parenthesis plus 5 left curly bracket straight k minus left parenthesis negative 2 right parenthesis right curly bracket plus 3 left parenthesis negative 2 minus 1 right parenthesis right square bracket
equals 1 half left square bracket 7 minus 7 straight k plus 5 straight k plus 10 minus 9 right square bracket
equals 1 half left square bracket 8 minus 2 straight k right square bracket equals 4 minus straight k

If the points are collinear, then area of the triangle = 0
⇒    4 - k = 0
⇒    k = 4.

93 Views

Advertisement

Coordinate Geometry

Hope you found this question and answer to be good. Find many more questions on Coordinate Geometry with answers for your assignments and practice.

Mathematics

Browse through more topics from Mathematics for questions and snapshot.