Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i. - Zigya
Advertisement

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Let     Z1 = (x – iy) (3 + 5i) = 3c + 5xi - 3yi - 5yi2 = (3x + 5y) + i ( 5x - 3y)
   
Let     Z2    =  -6 -24i
5
It is given  that Z1  is conjugate of Z2
 
rightwards double arrow         Z1     = space space space space space space top enclose Z subscript 2 end enclose

rightwards double arrow   (3x + 5y) + i (5x - 3y) = -6 + 24 i

Equating real and imaginary parts, we get
                     3x + 5y  = - 6                                                             ....(i)
and                 5x - 3y   = 24                                                              ...(ii)

Multiplying (i)  by 5 and (ii) by 3, we get

             15x + 25y = -30                                                                  ...(iii)
              15x - 9y   = 72                                                                   ...(iv)

Subtracting (iv) from (iii), we get

                34y  = -102                    or  space space space space space space straight y space space equals space fraction numerator negative 102 over denominator 34 end fraction equals space minus 3

Putting y = -3 in (i), we get
          3x + 5 (-3) = -6
or              3x = -6 +15 = 9   or      x    = 3

Hence,      x = 3,   y = -3

128 Views

Advertisement

Complex Numbers and Quadratic Equations

Hope you found this question and answer to be good. Find many more questions on Complex Numbers and Quadratic Equations with answers for your assignments and practice.

Mathematics

Browse through more topics from Mathematics for questions and snapshot.