Find both the maximum value and the minimum value of3x4 – 8x3 + 12x2 – 48x + 25 - Zigya
Advertisement

Find both the maximum value and the minimum value of
3x4 – 8x3 + 12x2 – 48x + 25


Let f (x) = 3x4 – 8x3 + 12x2 – 48x + 25
f ' (x) = 12x3 – 24x2 + 24x – 48
f ' (x) = 0 ⇒ 12x3 – 24x2 + 24x – 48 = 0 ⇒ x– 2x+ 2x – 4 = 0
⇒ (x – 2) (x2 + 2) = 0 ⇒ x = 2 , ± i square root of 2.
Now x = 2 is the only real value in [0, 3]
f (0) = 0 – 0 + 0 – 0 + 25 = 25
f (2) = 48 – 64 + 48 – 96 + 25 = – 39
f (3) = 243 – 216 + 108 – 144 + 25 = 16
∴  max. value = 25 and min. value = – 39.

90 Views

Advertisement

Application of Derivatives

Hope you found this question and answer to be good. Find many more questions on Application of Derivatives with answers for your assignments and practice.

Mathematics Part I

Browse through more topics from Mathematics Part I for questions and snapshot.