If both (x - 2) and  are factors of px2 + 5x + r, show that p = r. - Zigya
Advertisement

If both (x - 2) and open parentheses straight x minus 1 half close parentheses are factors of px2 + 5x + r, show that p = r.


Let f(x) = px2 + 5 x + r
If (x - 2) is a factor of f (x), then by factor theorem
f(2) = 0 | x - 2 = 0 ⇒ x = 2
⇒ p(2)2 + 5(2) + r = 0
⇒ 4p + r + 10 = 0    ...(1)

If open parentheses straight x minus 1 half close parentheses is a factor of f (x), then by factor theorem,

straight f open parentheses 1 half close parentheses equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space straight x minus 1 half equals 0 rightwards double arrow straight x equals 1 half space rightwards double arrow space straight x equals 1 half
rightwards double arrow space space space straight p open parentheses 1 half close parentheses squared plus 5 open parentheses 1 half close parentheses plus straight r equals 0
rightwards double arrow space space space space straight p over 4 plus 5 over 2 plus straight r equals 0
rightwards double arrow space space space straight p plus 4 straight r plus 10 equals 0 space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

Subtracting (2) from (1), we get
3p - 3r = 0
⇒    p = r

777 Views

Advertisement

Polynomials

Hope you found this question and answer to be good. Find many more questions on Polynomials with answers for your assignments and practice.

Mathematics

Browse through more topics from Mathematics for questions and snapshot.