If δ1 and δ2 be the angles of dip observed in two planes at right angles to each other and δ is the true angle of dip, then prove thatcot2 δ1 + cot2 δ2 = cot2 δ - Zigya
Advertisement

If δ1 and δ2 be the angles of dip observed in two planes at right angles to each other and δ is the true angle of dip, then prove that
cot2 δ1 + cot2 δ2 = cot2 δ


If horizontal and vertical components of earth's magnetic field are represented by BHand Bv respectively, then
tan space straight delta space equals space straight B subscript straight V over straight B subscript straight H

If horizontal and vertical components of earth's magnetic field are r
Let δ1 be the (apparent) dip in a plane which makes angle θ with the magnetic meridian. In this plane, the vertical component will be BV only but the effective horizontal component will be BH cos θ.
                           tan space straight delta space equals space fraction numerator straight B subscript straight V over denominator straight B subscript straight H space cos space straight theta end fraction
or,                     tan space straight delta subscript 1 space equals space fraction numerator tan space straight delta over denominator cos space straight theta end fraction                      because straight B subscript straight V space equals space straight B subscript straight H space tanδ
or,                     cos space straight theta space equals space fraction numerator tan space straight delta over denominator tan space straight delta subscript 1 end fraction space equals space tan space space cot space straight delta subscript 1               ...(i)

Let δ2 be the (apparent) dip in the second plane. The angle made by this plane with the magnetic meridian will be (90° – θ).
Effective horizontal component in this plane is BH cos (90° – θ) i.e., BH sin θ. The vertical component will be Bv only.
                       tan space straight delta subscript 2 space equals space fraction numerator straight B subscript straight V over denominator straight B subscript straight H space sin space straight theta end fraction space equals space fraction numerator tan space straight delta over denominator sin space straight theta end fraction
or,                    sin space straight theta space equals space fraction numerator tan space straight delta over denominator tan space straight delta subscript 2 end fraction space equals space tanδ space cot space straight delta subscript 2               ...(ii)
Squaring and adding equation (i) and (ii), we get
                  cos squared straight theta space plus space sin squared straight theta space equals space tan squared straight delta space cot squared straight delta subscript 1 space plus space tan squared straight delta space cot squared straight delta subscript 2
or,                       1 space equals space tan squared straight delta space left parenthesis cot squared straight delta subscript 1 plus cot squared straight delta subscript 2 right parenthesis
or,               cot squared straight delta space equals space cot squared straight delta subscript 1 plus cot squared straight delta subscript 2             Proved

1743 Views

Advertisement

Magnetism and Matter

Hope you found this question and answer to be good. Find many more questions on Magnetism and Matter with answers for your assignments and practice.

Physics Part I

Browse through more topics from Physics Part I for questions and snapshot.