zigya tab

The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which
(a)    an electron, and
(b)    a neutron, would have the same de-Broglie wavelength.


Given, 
Wavelength of sodium light, λ = 589 nm 

We know that,   λ = h2mE 

                     E = h22λ2m 

(a) For electron, 

Energy, E = (6.63 × 10-34)22 × (589 × 10-9)2 × 9 × 10-31 

               = 7.03 × 10-25J 

(b) For neutron,

Energy, E = (6.63 × 10-34)22 × (589 × 10-9)2 × 1.66 × 10-27 

               = 3.81 × 10-28J.

320 Views

For what kinetic energy of a neutron will the associated de-Broglie wavelength be 1.40 x 10–10 m?

De-broglie wavelength, λ = 1.40×10-10 m

Mass of neutron, m = 1.675 × 10-27 kgPlanck's constant, h = 6.63 × 10-34 Js De-brogliw wavelength is given by, λ = hmv  

i.e., v = h   v = 6.63×10-341.675×10-27 × 1.40×10-10           = 28.28 × 102 m/s  

Kinetic energy is given by, K.E = 12mv2  

             = 12×1.675×10-27×( 28.8×102)2 = 6.634 × 10-21 J
149 Views

Also find the de-Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of  32kT at 300 K.

Given, 
Average Kinetic energy, E = 32kT                                                 = 32×(1.38 × 10-23) × 300                                                 = 6.21 × 10-21J
                  (Here, k is Boltzmann constant.  The value of k is 1.38 × 10-38JK-1)

De-broglie wavelength is given by,
           λ =h2mE
      λ = 6.63 × 10-342 ×6.21 ×10-21×1.675 × 10-27 

i.e.,    λ = 1.45 × 10-10 m.
130 Views

An electron and a photon each have a wavelength of 1.00 nm. Find
(a)    their momenta,
(b)    the energy of the photon, and
(c)    the kinetic energy of electron.
(Take h = 6.63 x 10–34 Js).

Given,
Wavelength of electron and photon, λe = λp = 1.00 nm = 1 x 10
–9 m 

(a) Momenta of the particle, 

   p = hλ = 6.63 × 10-341.00 × 10-19kg ms-1 

                = 6.63 × 10-25 kg ms-1

(b) Energy of the photon, E = hv = hcλ

                                           = 6.63 × 10-34 × 3 × 1081 × 10-9J
                                         = 1.989 × 10-16J= 1.989 × 10-161.6 × 10-19eV
                                         = 1.243 ke V 

(c) Now, using the de-broglie formula, we have   h2mEk= λ
           2mEk = hλ
i.e.,                 Ek = h222
                  Ek = (6.63 × 10-34)22 × 9.1 × 10-31 × (10-9)2 
                          = 43.96 × 10-6818.2 × 10-49J = 2.4 × 10-19J 

                      Ek = 2.4 × 10-191.6 × 10-19eV      = 1.5 eV.              
112 Views

Advertisement

What is the de-Broglie wavelength of
(a)    a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s.
(b)    a ball of mass 0.060 kg moving at a speed of 1.0 m/s and
(c)    a dust particle of mass 1.0 x 10–9 kg drifting with a speed of 2.2 m/s?


(a) Given,

Mass of the bullet, m = 0.040 kgVelocity with which the bullet is travelling, v = 1 kms-1 = 103 ms-1Using the formula of momentum,                                                               p = mv                                                                  = 0.040 × 103                                                                   = 40 kg ms-1
 De-broglie wavelength is, 
                         λ = hp     = 6.62 × 10-3440      = 1.7 × 10-35m 


(b) Mass of the ball, m = 0.060 kg 
     Velocity with which the ball is moving, v = 1.0 ms-1
     Momentum of the particle,  p = mv = 0.060 kg ms-1

Therefore, 

De-broglie wavelength of the particle, λ = hp    = 6.62 × 10-340.060    = 1.1 × 10-32

(c) Mass of the dust particle, m = 1.0 × 10-9 kg
     Velocity of the particle, v= 2.2 m/s Momentum of the particle, p = mv = 2.2 × 10-9Therefore,De-broglie wavelength, λ = hp = 6.62 × 10-342.2 × 10-19                                                             = 3 × 10-25m.

162 Views

Advertisement
Advertisement