The area bounded between the parabolas x2=y/4 and x2 = 9y, and t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

201.

The area bounded between the parabolas x2=y/4 and x2 = 9y, and the straight line y = 2 is

  • 20 square root of 2
  • fraction numerator 10 space square root of 2 over denominator 3 end fraction
  • fraction numerator 20 space square root of 2 over denominator 3 end fraction
  • fraction numerator 20 space square root of 2 over denominator 3 end fraction


C.

fraction numerator 20 space square root of 2 over denominator 3 end fraction


Required space area
space equals space 2 integral subscript 0 superscript 2 space open parentheses 3 square root of straight y space minus fraction numerator square root of straight y over denominator 2 end fraction close parentheses space dy space equals space 2 integral subscript 10 superscript 2 open parentheses 5 over 2 square root of straight y close parentheses space dy
equals space open square brackets fraction numerator straight y to the power of 3 divided by 2 end exponent over denominator 3 divided by 2 end fraction close square brackets subscript straight y equals 0 end subscript superscript straight y space equals 2 end superscript space equals space 10 over 3 space left parenthesis 2 to the power of 3 divided by 2 end exponent minus 0 right parenthesis space equals space fraction numerator 20 square root of 2 over denominator 3 end fraction
721 Views

Advertisement
202.

If z ≠ 1 and fraction numerator straight z squared over denominator straight z minus 1 end fraction is real, then the point represented by the complex number z lies

  • either on the real axis or on a circle passing through the origin

  • on a circle with centre at the origin

  • either on the real axis or on a circle not passing through the origin

  • either on the real axis or on a circle not passing through the origin

159 Views

203.

The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is

  • 10/3

  • 3/5

  • 6/5

  • 6/5

172 Views

204.

An ellipse is drawn by taking a diameter of the circle (x–1)2 + y2 = 1 as its semiminor axis and a diameter of the circle x2 + (y – 2)2 = 4 as its semi-major axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is

  • 4x2+ y2 = 4

  • x2 +4y2 =8

  • 4x2 +y2 =8

  • 4x2 +y2 =8

398 Views

Advertisement
205.

For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is

  • there is a regular polygon with r/R = 1/2

  • there is a regular polygon with straight r over straight R space equals space fraction numerator 1 over denominator square root of 2 end fraction

  • there is a regular polygon with r/R = 2/3

  • there is a regular polygon with r/R = 2/3

190 Views

206.

hyperbola passes through the point P(√2, √3) and has foci at (± 2, 0). Then the tangent to this hyperbola at P also passes through the point

  • left parenthesis negative square root of 2 comma space minus square root of 3 right parenthesis
  • left parenthesis 3 square root of 2 space comma space 2 square root of 3 right parenthesis
  • left parenthesis 2 square root of 2 space comma 3 space square root of 3 right parenthesis
  • left parenthesis 2 square root of 2 space comma 3 space square root of 3 right parenthesis
1078 Views

207.

The eccentricity of an ellipse whose centre is at the origin is 1/2. If one of its directives is x= –4, then the equation of the normal to it at (1,3/2) is

  • x + 2y = 4

  • 2y – x = 2

  • 4x – 2y = 1

  • 4x – 2y = 1

763 Views

208.

The ellipse x2+ 4y2= 4 is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is

  • x2+ 16y2= 16 

  • x2+ 12y2= 16 

  • 4x2+ 48y2= 48 

  • 4x2+ 48y2= 48 

371 Views

Advertisement
209.

A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is 1/2. Then the length of the semi−major axis is 

  • 8/3

  • 2/3

  • 5/3

  • 5/3

737 Views

210.

A parabola has the origin as its focus and the line x = 2 as the directrix. Then the vertex of the parabola is at 

  • (0, 2)

  • (1, 0)

  • (0,1)

  • (0,1)

342 Views

Advertisement