A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is
(x-p)2 = 4qy
(x-q)2 = 4py
(y-p)2 = 4qx
(y-p)2 = 4qx
A.
(x-p)2 = 4qy
In a circle, AB is a diameter where the co-ordinate of A is (p, q) and let the co-ordinate of B is (x1 , y1 ).
Equation of circle in diameter form is (x - p)(x - x1 ) + (y - q)(y - y1 ) = 0
x2 - (p + x1 )x + px1 + y2 - (y1 + q)y + qy1 = 0
x2 - (p + x1 )x + y2 - (y1 + q)y + px1 + qy1 = 0
Since this circle touches X-axis
∴ y = 0
⇒ x2 - (p + x1 )x + px1 + qy1 = 0 Also the discriminant of above equation will be equal to zero because circle touches X-axis.
∴ (p + x1 )2 = 4(px1 + qy1) p2 + x21 + 2px1
= 4px1 + 4qy1 x21 - 2px1 + p2 = 4qy1
Therefore the locus of point B is, (x - p)2 = 4qy
If the lines 2x + 3y + 1 = 0 and 3x – y – 4 = 0 lie along diameters of a circle of circumference 10π, then the equation of the circle is
x2 + y2- 2x +2y -23 = 0
x2 - y2- 2x -2y -23 = 0
x2 - y2- 2x -2y +23 = 0
x2 - y2- 2x -2y +23 = 0
If a ≠ 0 and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the parabolas y2+ 4ax = and x2+ 4ay = , then
d2 + (2b+3c)2 = 0
d2 +(3d+2c2) = 0
d2 + (2b-3c)2 = 0
d2 + (2b-3c)2 = 0
The eccentricity of an ellipse, with its centre at the origin, is 1 /2 . If one of the directrices is x = 4, then the equation of the ellipse is
3x2 +4y2 = 1
3x2+ 4y2 = 12
4x2 +3y2 = 12
4x2 +3y2 = 12
PQR is a triangular park with PQ = PR = 200 m. A T.V. tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P, Q and R are respectively 45o, 30o and 30o, then the height of the tower (in m) is
50√2
100
50
100√3
Tangents are drawn to the hyperbola 4x2 – y2 = 36 at the points P and Q. If these tangents intersect at the point T(0, 3) then the area (in sq. units) of △PTQ is
36√5
45√5
54√3
60√3
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the
parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and,∠CPB = θ then a value of tan θ is
4/3
1/2
2
3
A straight line through a fixed point (2, 3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is
3x + 2y = 6xy
3x + 2y = 6
2x + 3y = xy
3x + 2y = xy
Let P be the foot of the perpendicular from focus S of hyperbola on the line bx- ay = 0 and let C be the centre of the hyperbola. Then, the area of the rectangle whose sides are equal to that of SP and CP is
2ab
ab
B is an extremity of the minor axis of an ellipse whose foci are S and S'. If SBS' is a right angle, then the eccentricity of the ellipse is