The line y = x intersects the hyperbola x29 - y225

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

281.

The line y = x intersects the hyperbola x29 - y225 = 1 at the points P and Q. The eccentricity of ellipse with PQ as major axis and minor axis of length 52 is

  • 53

  • 53

  • 59

  • 229


D.

229

Given equation of hyperbola and line are

x29 - y225 = 1 and y = x respectively.

For intersection point of both curve put y = x, we get

x29 - y225 = 1       x2 = 9 × 2516                = 1542        x = ± 154 and y = ± 154

 Interscetion point P154, 154and                  Q- 154, - 154

Since, PQ is major axis, then its length

            = 22 . 154 = 152

and length of minor axis is 52   (given)

i.e., Major axis, 2a = 152  a = 1522

and minor axis, 2b = 52  b = 522

 Eccentricity of an ellipse= a2 - b2a2= 1 - ba2= 1 - 132= 89= 229


Advertisement
282.

If the distance between the foci of an ellipse is equal to the length of the latusrectum, then its eccentricity is

  • 145 - 1

  • 125 + 1

  • 125 - 1

  • 145 + 1


283.

The equation of the circle passing through the point (1, 1) and the points of intersection of x2 + y2 -  6x - 8 = 0 and x2 + y2 - 6 = 0 is 

  • x2 + y2 + 3x - 5 = 0

  • x2 + y2 - 4x + 2 = 0

  • x2 + y2 + 6x - 4 = 0

  • x2 + y2 - 4y - 2 = 0


284.

The area of the region bounded by the parabola y = x2 - 4x + 5 and the straight line y= x + l is

  • 12

  • 2

  • 3

  • 92


Advertisement
285.

If P be a point on the parabola y = 4ax with focus F. Let Q denote the foot of the perpendicular from P onto the directrix. Then, tanPQFtanPFQ is

  • 1

  • 12

  • 2

  • 14


286.

The equations of the circles, which touch both the axes and the line 4x + 3y = 12 and have centres in the first quadrant, are

  • x2 + y2 + x - y + 1 = 0

  • x2 + y2 - 2x - 2y + 1 = 0

  • x2 + y2 - 12x - 12y + 36 = 0

  • x2 + y2 - 6x - 6y + 36 = 0


287.

The equation y2 + 4x + 4y + k = 0 represents a parabola whose latusrectum is

  • 1

  • 2

  • 3

  • 4


288.

If the circles x2 + y2 + 2x + 2ky + 6 = 0 and x2 + y+ 2ky + k = 0 intersect orthogonally, then k is equal to

 

  • 2 or - 32

  • - 2 or - 32

  • 2 or  32

  • - 2 or  32


Advertisement
289.

If four distinct points (2k, 3k), (2, 0), (0, 3), (0, 0) lie on a circle, then

  • k < 0

  • 0 < k < 1

  • k = 1

  • k > 1


290.

Let the foci of the ellipse x29 + y2 = 1 subtend a right angle at a point P. Then, the locus of P is

  • x2 + y2 = 1

  • x2 + y2 = 2

  • x2 + y2 = 4

  • x2 + y2 = 8


Advertisement