Show that the following differential equation is homogeneous and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

191.

Solve the  differential equation:
straight x squared dy over dx space equals straight y left parenthesis straight x plus straight y right parenthesis.

76 Views

 Multiple Choice QuestionsLong Answer Type

192.

Solve the  differential equation:
left parenthesis straight y plus straight x right parenthesis space dy over dx space equals space straight y minus straight x.

71 Views

193.

Solve the following differential equation:
(y2 – x2) dy = 3 x y dx

74 Views

Advertisement

194. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(x - y) y' = x + 2 y 


The given differential equation is
       left parenthesis straight x minus straight y right parenthesis space dy over dx space equals space straight x plus 2 straight y
or                  dy over dx equals fraction numerator straight x plus 2 straight y over denominator straight x minus straight y end fraction                                     ...(1)
Put y = vx so that dy over dx equals straight v plus straight x dv over dx

therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx equals fraction numerator straight x plus 2 space straight v space straight x over denominator 1 minus straight v space straight x end fraction space space space space space space or space space space space space space straight v plus straight x dv over dx equals fraction numerator 1 plus 2 straight v over denominator 1 minus straight v end fraction
therefore space space space space space space space space space straight x dv over dx equals fraction numerator 1 plus 2 straight v over denominator 1 minus straight v end fraction minus straight v space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight x space dv over dx space equals fraction numerator 1 plus 2 space straight v minus straight v plus straight v squared over denominator 1 minus straight v end fraction
or space space space space space space space space straight x dv over dx equals fraction numerator 1 plus straight v plus straight v squared over denominator 1 minus straight v end fraction
Separating the variables,  fraction numerator 1 minus straight v over denominator 1 plus straight v plus straight v squared end fraction dv space equals space 1 over straight x dx
Integrating,      integral fraction numerator 1 minus straight v over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dx

therefore space space space space integral fraction numerator negative begin display style 1 half end style left parenthesis 2 straight v plus 1 right parenthesis plus begin display style 3 over 2 end style over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dv

therefore space space space minus 1 half integral fraction numerator 2 straight v plus 1 over denominator 1 plus straight v plus straight v squared end fraction dv plus 3 over 2 integral fraction numerator 1 over denominator 1 plus straight v plus straight v squared end fraction dv space equals space integral 1 over straight x dx

therefore space space minus 1 half integral fraction numerator 2 straight v plus 1 over denominator 1 plus straight v plus straight v squared end fraction dv plus 3 over 2 integral fraction numerator 1 over denominator open parentheses straight v plus begin display style 1 half end style close parentheses squared plus open parentheses begin display style fraction numerator square root of 3 over denominator 2 end fraction end style close parentheses squared end fraction dv space equals space integral 1 over straight x dx

therefore space space space space minus 1 half log space open vertical bar 1 plus straight v plus straight v squared close vertical bar plus 3 over 2. space fraction numerator 1 over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction space tan to the power of negative 1 end exponent open parentheses fraction numerator straight v plus begin display style 1 half end style over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar plus straight c subscript 1

therefore space space space minus 1 half log space open vertical bar 1 plus straight y over straight x plus straight y squared over straight x squared close vertical bar plus square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight v plus 1 over denominator square root of 3 end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar space plus space straight c subscript 1
therefore space space space space minus 1 half log space open vertical bar fraction numerator straight x squared plus straight x space straight y plus straight y squared over denominator straight x squared end fraction close vertical bar plus square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 begin display style straight y over straight x end style plus 1 over denominator square root of 3 end fraction close parentheses space equals space log space open vertical bar straight x close vertical bar space plus space straight c subscript 1
therefore space space space space 2 square root of 3 space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight y plus straight x over denominator straight x square root of 3 end fraction close parentheses space minus space log space open vertical bar straight x squared plus xy plus straight y squared close vertical bar plus log space straight x squared space equals space log space straight x squared plus straight c
therefore space space space 2 square root of 3 space tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x plus 2 straight y over denominator straight x square root of 3 end fraction close parentheses space minus space log space open vertical bar straight x squared plus straight x space straight y space plus straight y squared close vertical bar space equals space straight c
Which is required solution. 


78 Views

Advertisement
Advertisement
195. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(x2 + y2) y' = 8 x2 - 3 x y + 2 y2
74 Views

196. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(3 x y + y2) dx = (x2 + x y) dy
71 Views

197. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
2 x y dx + (x2 + 2 y2) dy = 0
74 Views

198. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
left parenthesis 2 straight x squared straight y plus straight y cubed right parenthesis space dx plus space left parenthesis xy squared minus 3 straight x cubed right parenthesis space dy space equals space 0
74 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

199. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
straight x space straight y apostrophe space minus space straight y space plus space straight x space sin space space open parentheses straight y over straight x close parentheses space equals 0
89 Views

 Multiple Choice QuestionsLong Answer Type

200. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
left parenthesis straight x plus 2 straight y right parenthesis space dx space minus space left parenthesis 2 straight x minus straight y right parenthesis space dy space equals space 0
74 Views

Advertisement