Show that the following differential equation is homogeneous and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

191.

Solve the  differential equation:
straight x squared dy over dx space equals straight y left parenthesis straight x plus straight y right parenthesis.

76 Views

 Multiple Choice QuestionsLong Answer Type

192.

Solve the  differential equation:
left parenthesis straight y plus straight x right parenthesis space dy over dx space equals space straight y minus straight x.

71 Views

193.

Solve the following differential equation:
(y2 – x2) dy = 3 x y dx

74 Views

194. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(x - y) y' = x + 2 y 
78 Views

Advertisement
195. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(x2 + y2) y' = 8 x2 - 3 x y + 2 y2
74 Views

196. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
(3 x y + y2) dx = (x2 + x y) dy
71 Views

197. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
2 x y dx + (x2 + 2 y2) dy = 0
74 Views

198. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
left parenthesis 2 straight x squared straight y plus straight y cubed right parenthesis space dx plus space left parenthesis xy squared minus 3 straight x cubed right parenthesis space dy space equals space 0
74 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

199. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
straight x space straight y apostrophe space minus space straight y space plus space straight x space sin space space open parentheses straight y over straight x close parentheses space equals 0
89 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

200. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
left parenthesis straight x plus 2 straight y right parenthesis space dx space minus space left parenthesis 2 straight x minus straight y right parenthesis space dy space equals space 0


The given differential equation is
                    left parenthesis straight x plus 2 straight y right parenthesis space dx space minus space left parenthesis 2 straight x minus straight y right parenthesis space dy space equals space 0
or                 dy over dx space equals space fraction numerator straight x plus 2 straight y over denominator 2 straight x minus straight y end fraction

Put y = v x  so that   dy over dx space equals space straight v plus straight x dv over dx

therefore space space space straight v plus straight x dv over dx space equals fraction numerator straight x plus 2 vx over denominator 2 straight x minus vx end fraction
therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator 1 plus 2 straight v over denominator 2 minus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator 1 plus 2 straight v over denominator 2 minus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 plus 2 straight v minus 2 straight v plus straight v squared over denominator 2 minus straight v end fraction
therefore space space space space space space straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 2 minus straight v end fraction
therefore space space space fraction numerator 2 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space 1 over straight x dx
therefore space space space space integral fraction numerator 2 minus straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx
therefore space space space 2 space integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv minus 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space integral 1 over straight x dx
therefore space 2 space tan to the power of negative 1 end exponent straight v space minus space 1 half log space left parenthesis 1 plus straight v squared right parenthesis space equals space log space open vertical bar straight x close vertical bar plus space log space straight c subscript 1
therefore space space 4 space tan to the power of negative 1 end exponent straight v space minus space log space left parenthesis 1 plus straight v squared right parenthesis space equals space 2 space log space open vertical bar straight x close vertical bar space plus space 2 space log space straight c subscript 1
therefore space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space log space straight x squared plus space log space straight c
therefore space space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space left parenthesis straight x squared plus straight y squared right parenthesis space plus space log space straight x squared space equals space log space straight x squared plus space log space straight c
therefore space space space 4 space tan to the power of negative 1 end exponent straight y over straight x minus log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space log space straight c
which is the required solution. 

74 Views

Advertisement
Advertisement