For the given differential equations, find the particular solu

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

221.

Solve:
straight y apostrophe space equals space straight y over straight x plus sin straight y over straight x

78 Views

222.

Solve:
dy over dx space equals straight y over straight x plus tan straight y over straight x open parentheses 0 less than straight y over straight x less than straight pi over 2 close parentheses

74 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

223.

For the given differential equations, find the particular solution satisfying the given condition:
left parenthesis straight x plus straight y right parenthesis space dy space plus space left parenthesis straight x minus straight y right parenthesis dx space equals space 0 space semicolon space space straight y space equals space 1 space space space when space straight x space equals space 1


The given differential equation is
             left parenthesis straight x plus straight y right parenthesis space dy space plus space left parenthesis straight x minus straight y right parenthesis space dx space equals space 0 comma space space space or space space space left parenthesis straight x plus straight y right parenthesis space dy space equals space minus left parenthesis straight x minus straight y right parenthesis space dx
therefore space space space space space dy over dx space equals space minus fraction numerator straight x minus straight y over denominator straight x plus straight y end fraction space space space or space space space dy over dx space equals space fraction numerator straight y minus straight x over denominator straight y plus straight x end fraction                        ...(1)
Put y = v  x,  so that dy over dx space equals straight v plus straight x dv over dx
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space minus straight x over denominator vx plus straight x end fraction space space or space space straight v plus straight x dv over dx space equals space fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction

or       straight x dy over dx space equals fraction numerator straight v minus 1 over denominator straight v plus 1 end fraction minus straight v space equals space fraction numerator negative 1 minus straight v squared over denominator straight v plus 1 end fraction space equals space fraction numerator negative left parenthesis 1 plus straight v squared right parenthesis over denominator 1 plus straight v end fraction space space or space space fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv space equals negative dx over straight x
or      integral fraction numerator 1 plus straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral dx over straight x
or     integral fraction numerator 1 over denominator 1 plus straight v squared end fraction dv plus 1 half integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral 1 over straight x dx
or               tan to the power of negative 1 end exponent straight v space plus space 1 half log space open vertical bar 1 plus straight v squared close vertical bar plus log space open vertical bar straight x close vertical bar space equals space straight c
or               tan to the power of negative 1 end exponent straight v plus 1 half left square bracket log space open vertical bar 1 plus straight v squared close vertical bar space plus space 2 space log space open vertical bar straight x close vertical bar right square bracket space equals space straight c
or           tan to the power of negative 1 end exponent straight v plus 1 half log space open vertical bar straight x squared close vertical bar space space open vertical bar 1 plus straight v squared close vertical bar space equals space straight c
or space space tan space to the power of negative 1 end exponent straight y over straight x space plus space 1 half space log space open vertical bar straight x squared plus open parentheses 1 plus straight y squared over straight x squared close parentheses close vertical bar space equals space straight c
or space space space tan space to the power of negative 1 end exponent straight y over straight x plus 1 half log space open vertical bar straight x squared plus straight y squared close vertical bar space equals space straight c
therefore space space space space tan to the power of negative 1 end exponent straight y over straight x plus 1 half log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space straight c space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
                 Now y = 1  when x = 1
therefore space space space space space space tan to the power of negative 1 end exponent 1 plus 1 half log 2 space equals space straight c space space space space space rightwards double arrow space space space space space straight c space equals space straight pi over 4 plus 1 half log space 2
therefore space space space space from space left parenthesis 2 right parenthesis comma space space tan to the power of negative 1 end exponent straight y over straight x plus 1 half log space left parenthesis straight x squared plus straight y squared right parenthesis space equals space straight pi over 4 plus 1 half log space 2
                              is the required solution. 
75 Views

Advertisement
224.

For the given differential equation, find the particular solution satisfying the given condition:
straight x squared dy plus left parenthesis xy plus straight y squared right parenthesis dx space equals space 0 semicolon space space space straight y space equals space 1 space when space straight x space equals space 1

80 Views

Advertisement
225.

For the given differential equation, find the particular solution satisfying the given condition:
open square brackets straight x space sin squared open parentheses straight y over straight x close parentheses minus straight y close square brackets space dx plus space straight x space dy space equals space 0 colon space space space straight y space equals straight pi over 4 space space when space straight x space equals space 1


73 Views

226.

For the given differential equation, find the particular solution satisfying the given condition:
dy over dx minus straight y over straight x plus cosec space open parentheses straight y over straight x close parentheses space equals space 0 space semicolon space space space straight y space equals space 0 space space space when space straight x space equals space 1




75 Views

227.

For the given differential equation, find the particular solution satisfying the given condition:
       2 xy plus straight y squared minus 2 straight x squared dy over dx equals 0 semicolon space space space straight y space equals 2 space space when space straight x space equals space 1.





75 Views

228.

For the given differential equation, find the particular solution satisfying the given condition:
          2 straight x squared straight y apostrophe space minus space 2 xy plus straight y squared space equals space 0 comma space space space space straight y left parenthesis straight e right parenthesis space equals space straight e
       





74 Views

Advertisement
229.

For the given differential equation, find the particular solution satisfying the given condition:
                      2 xy plus straight y squared minus 2 straight x squared straight y apostrophe space equals space 0 space space space space space space space space space space space space space straight y left parenthesis 1 right parenthesis space equals space 2
          
       





73 Views

 Multiple Choice QuestionsShort Answer Type

230.

Find a particular solution of the differential equation
(x – y) (dx + dy) = dx – dy. given that y = – 1, when x = 0.

75 Views

Advertisement