Find the general solution of the differential equation,x log

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

331.

Solve the following differential equation:

cos2 x dydx + y = tanx


332.

Solve the following differential equation:

 1 + x2  dydx + y = tan-1 x


333.

Find the particular solution, satisfying the given condition, for the following differential equation:

dydx - yx + cosec yx = 0 ;   y = 0  when  x = 1


 Multiple Choice QuestionsShort Answer Type

334.

What is the degree of the following differential equation?

5x 5x dydx2 - d2ydx2 - 6y = log x


Advertisement

 Multiple Choice QuestionsLong Answer Type

335.

Find the particular solution of the differential equation satisfying the given conditions: x2 dy + (xy + y2 )dx = 0; y = 1 when x = 1.


Advertisement

336.

Find the general solution of the differential equation,

x log x dydx + y = 2x log x


x log x dydx + y = 2x log x

Dividing all the terms of the equation by  x log x, we get

 dydx + yx log x = 2x2

This equation is in the form of a linear differential equation

dydx + py = Q,   where   P = 1x log x  and  Q = 2x2Now, I.F = e pdx =  e 1x log x dx = e log ( log x ) = log x

The general solution of the given differential equation is given by 

y x I.F. =  ( Q x I.F. ) dx + C

y log x =   2x2 log x  dxy log x = 2 log x ×1x2  dx.               = 2  log x ×  1x2 dx -  ddx  log x  × 1x2 dx  dx                = 2  log x  - 1x  -   1x ×  -1x   dx                = 2  - log xx +  1x2 dx                 = 2  - log xx - 1x  + CSo the required general solution is    y log x = - 2x  1 + log x  + C


Advertisement
337.

Find the particular solution of the differential equation satisfying the given conditions:

dydx = y tan x,    given that   y = 1  when   x= 0.


338.

Solve the following differential equation:

ex tan y dx + ( 1 - e) sec2 y dy  = 0


Advertisement
339.

Solve the following differential equation:

cos2 x dydx + y = tan x


340.

Solve the following differential equation:

2 x2 dydx - 2 x y + y2 = 0


Advertisement