Solve the following differential equation:ex tan y dx + ( 1 -&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

331.

Solve the following differential equation:

cos2 x dydx + y = tanx


332.

Solve the following differential equation:

 1 + x2  dydx + y = tan-1 x


333.

Find the particular solution, satisfying the given condition, for the following differential equation:

dydx - yx + cosec yx = 0 ;   y = 0  when  x = 1


 Multiple Choice QuestionsShort Answer Type

334.

What is the degree of the following differential equation?

5x 5x dydx2 - d2ydx2 - 6y = log x


Advertisement

 Multiple Choice QuestionsLong Answer Type

335.

Find the particular solution of the differential equation satisfying the given conditions: x2 dy + (xy + y2 )dx = 0; y = 1 when x = 1.


336.

Find the general solution of the differential equation,

x log x dydx + y = 2x log x


337.

Find the particular solution of the differential equation satisfying the given conditions:

dydx = y tan x,    given that   y = 1  when   x= 0.


Advertisement

338.

Solve the following differential equation:

ex tan y dx + ( 1 - e) sec2 y dy  = 0


The given differential equation is:

ex tan y dx + ( 1 - e) sec2 y dy  = 0

 ex tan y dx =  - ( 1 - e) sec2 y dy

  ex tan y dx = ( e - 1 ) sec2 y dy

 exex - 1 dx = sec2 ytan y dy

On integrating on both sides,  we get

 exex - 1 dx = sec2 ytan y dy                                  ..........(i)Let  I1 = sec2 ytan y dy Put  tan y = t sec2 y dy = dt  sec2 ytan y dy =  dtt = log  t  = log tan y       .........(ii)Let  I2 =  exex - 1 dx

Put   e - 1 = u

 ex  dx = du

 exex - 1  dx =  duu

                    = log u

                    = log  ( e - 1 )                        ............(iii)

From (i),  (ii),  and  (iii),  we get

log tan y = log  ( e - 1 ) + log C

 log tan y = log  C ( e - 1 ) 

 tan y  = C ( e - 1 ) 

The solution of the given differential equation is  tan y = C ( e - 1 ). 


Advertisement
Advertisement
339.

Solve the following differential equation:

cos2 x dydx + y = tan x


340.

Solve the following differential equation:

2 x2 dydx - 2 x y + y2 = 0


Advertisement