If y = Ax + Bx2, then x2d2ydx2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

371.

Let y be the solution of the differential equation

xdydx = y21 - ylogx satisfying y(1) = 1. Then, y satisfies

  • y = xy - 1

  • y = xy

  • y = xy + 1

  • y = xy + 2


 Multiple Choice QuestionsShort Answer Type

372.

Find the general solution of (x + log(y))dy + ydx = 0


 Multiple Choice QuestionsMultiple Choice Questions

373.

The general solution of the differential equation

d2ydx2 +8dydx + 16y = 0 is

  • (A + B)e5x

  • (A + Bx)e- 4x

  • (A + Bx2)e4x

  • (A + Bx4)e4x


374.

If x2 + y2 = 4, then ydydx + x is equal to

  • 4

  • 0

  • 1

  • - 1


Advertisement
375.

x3dx1 + x8 is equal to

  • 4tan-1x4 + C

  • 14tan-1x3 + C

  • x +4tan-1x4 + C

  • x2 +14tan-1x4 + C


376.

The degree and order of the differential equation

y = xdydx2 + dxdy2 are respectively

  • 1, 1

  • 2, 1

  • 4, 1

  • 1, 4


377.

The general solution of the differential equation logedydx = x + y is

  • ex + e- y = C

  • ex + ey = C

  • ey + e- x = C

  • e- x + e- y = C


Advertisement

378.

If y = Ax + Bx2, then x2d2ydx2 is equal to

  • 2y

  • y2

  • y3

  • y4


A.

2y

Given, y = Ax + Bx2

On differentiating, w.r.t. x, we get

dydx = - Ax2 + 2Bx

Again differentiating, we get

        d2ydx2 = + 2Ax3 + 2B x2d2ydx2 = 2Ax + 2Bx2                = 2y


Advertisement
Advertisement
379.

The solution of dydx = yx + tanyx is

  • x = csinyx

  • x = csinxy

  • y = csinyx

  • xy = csinxy


380.

Integrating Factor (IF) of the differential equation dydx - 3x2y1 + x3 = sin2x1 + x

  • e1 + x3

  • log1 + x3

  • 1 + x3

  • 11 + x3


Advertisement