If xsinxydy = ysinyx - xdx and 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

431.

ddxatan-1x + blogx - 1x + 1 = 1x4 - 1  a - 2b is equal to

  • 1

  • - 1

  • 0

  • 2


432.

The solution of the differential equation dydx = sinx + ytanx +y - 1 is

  • cscx +y + tanx + y = x +c

  • x + cscx + y = c

  • x + tanx + y = c

  • x + secx + y = c


433.

The differential equation of all straight lines touching the circle x2 + y2 = a2 is

  • y - dydx2 = a21 + dydx2

  • y - xdydx2 = a21 + dydx2

  • y - xdydx = a21 + dydx

  • y - dydx = a21 - dydx


434.

The differential equation dydx + y + 3 = 0 admits

  • infinite number of solutions

  • no solutions

  • a unique solution

  • many solutions


Advertisement
435.

Solution of the differential equation xdy - ydx - x2 + y2dx = 0

  • y - x2 + y2 = cx2

  • y + x2 + y2 = cx2

  • y + x2 + y2 = cy2

  • x - x2 + y2 = cy2


Advertisement

436.

If xsinxydy = ysinyx - xdx and y1 = π2, then the value of cosyx is equal to :

  • x

  • 1x

  • logx

  • ex


C.

logx

xsinxydy = ysinyx - xdx dydx = ysinyx - xxsinyx = yxsinyx - 1sinyxLet yx = u and dydx = xdudx + u    xdudx + u = usinu - 1sinu           xdudx = usinu - 1 - usinusinu - sinudu = 1xdx

On integrating both sides, we get

        cosu = logx + c cosyx = logx + c        y1 = π2 cosπ2 = log1 + c      c = 0Thus, cosyx = logx


Advertisement
437.

The differential equation of the system of all circles of radius r in the xy plane is :

  • 1 + dydx32 = r2d2ydx22

  • 1 + dydx32 = r2d2ydx23

  • 1 + dydx23 = r2d2ydx22

  • 1 + dydx23 = r2d2ydx23


438.

The general solution of the differential equation

d2ydx2 + 2dydx + y = 2e3x is given by

  • y = c1 + c2xex + e3x8

  • y = c1 + c2xe- x + e- 3x8

  • y = c1 + c2xe- x + e3x8

  • y = c1 + c2xex + e- 3x8


Advertisement
439.

The solution of the differential ydx + (x - y3)dy = 0 is:

  • xy = 13y3 + c

  • xy = y4 + c

  • y4 = 4xy + c

  • 4y = y3 + c


440.

If the distances covered by a particle in time t is proportional to the cube root of its velocity, then the acceleration is

  • a constant

  •  s3

  •  1s3

  •  s5


Advertisement