Let F denotes the family of ellipses whose centre is at the origi

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

491.

Let F denotes the family of ellipses whose centre is at the origin and major axis is the y-axis. Then, equation of the family F is :

  • d2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • d2ydx2 - dydxxdydx - y = 0


C.

xyd2ydx2 + dydxxdydx - y = 0

Equation of family of ellipse is x2a2 + y2b2 = 1On differentiating w.r.t. x, we get 2xa2 + 2yb2dydx = 0       ...i  xa2 + yb2dydx = 0      ...iiAgain differentiating w.r.t. x, we get        1a2 + yb2d2ydx2 + dydx = 0 - yxdydx + yd2ydx2 + dydx2 = 0  from (ii)     xyd2ydx2 + dydxxdydx - y = 0


Advertisement
492.

Solution of the equation xdydx2 + 2xydydx + y = 0 is :

  • x + y = a

  • x - y = a

  • x2 + y2 = a2

  • x + y = a


493.

The solution of differential equation (x + y )(dx - dy) = dx + dy is :

  • x - y = kex - y

  • x + y = kex + y

  • x + y = k(x - y)

  • x + y = kex - y


494.

The solution of dydx + 1 = cscx +y is  :

  • cosx +y +x = c

  • cosx +y = c

  • sinx +y + x = c

  • sinx +y + sinx +y = c


Advertisement
495.

The order of the differential equation

d2ydx23 = 1 + dydx12 is :

  • 2

  • 3

  • 12

  • 4


496.

The integrating factor of the differential equation cosxdydx + ysinx = 1 is :

  • cosx

  • tanx

  • sinx

  • secx


497.

Solution of the differential equation tan(y) . sec2(x)dx + tan(x) · sec2(y)dy = 0 is

  • tan(x) + tan(y) = k

  • tan(x) - tan(y) = k

  • tanxtany = k

  • tanx . tany = k


498.

The differential equation of all non-horizontal lines in a plane is :

  • d2ydx2 = 0

  • dxdy = 0

  • dydx = 0

  • d2xdy2 = 0


Advertisement
499.

The order and degree of the differential equation y + d2ydx2 = x + dydx32 are :

  • 2, 2

  • 2, 1

  • 1, 2

  • 2, 3


500.

The solution of 2(y + 3) - xy dydx = 0 with y = - 2,when x = 1 is

  • (y + 3) = x2

  • x2(y + 3) = 1

  • x4(y + 3) = 1

  • x2(y + 3)3 = ey + 2


Advertisement