The solution of differential equation (x + y )(dx - dy) = dx + dy

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

491.

Let F denotes the family of ellipses whose centre is at the origin and major axis is the y-axis. Then, equation of the family F is :

  • d2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • d2ydx2 - dydxxdydx - y = 0


492.

Solution of the equation xdydx2 + 2xydydx + y = 0 is :

  • x + y = a

  • x - y = a

  • x2 + y2 = a2

  • x + y = a


Advertisement

493.

The solution of differential equation (x + y )(dx - dy) = dx + dy is :

  • x - y = kex - y

  • x + y = kex + y

  • x + y = k(x - y)

  • x + y = kex - y


D.

x + y = kex - y

(x + y)dx - (x + y)dy = dx + dy

 x + y - 1dx = x + y + 1dy dydx = x + y - 1x +y + 1Let x + y = v and dydx = dvdx - 1 dvdx - 1 = v - 1v + 1        dvdx = v - 1 + v + 1v + 1 v + 12vdv = dx 121dv + 121vdv = 1dx 12v + 12logv = x + logc 12x +y + 12logx +y = x + logc logx +yc2 = x - y         x + y = kex - y


Advertisement
494.

The solution of dydx + 1 = cscx +y is  :

  • cosx +y +x = c

  • cosx +y = c

  • sinx +y + x = c

  • sinx +y + sinx +y = c


Advertisement
495.

The order of the differential equation

d2ydx23 = 1 + dydx12 is :

  • 2

  • 3

  • 12

  • 4


496.

The integrating factor of the differential equation cosxdydx + ysinx = 1 is :

  • cosx

  • tanx

  • sinx

  • secx


497.

Solution of the differential equation tan(y) . sec2(x)dx + tan(x) · sec2(y)dy = 0 is

  • tan(x) + tan(y) = k

  • tan(x) - tan(y) = k

  • tanxtany = k

  • tanx . tany = k


498.

The differential equation of all non-horizontal lines in a plane is :

  • d2ydx2 = 0

  • dxdy = 0

  • dydx = 0

  • d2xdy2 = 0


Advertisement
499.

The order and degree of the differential equation y + d2ydx2 = x + dydx32 are :

  • 2, 2

  • 2, 1

  • 1, 2

  • 2, 3


500.

The solution of 2(y + 3) - xy dydx = 0 with y = - 2,when x = 1 is

  • (y + 3) = x2

  • x2(y + 3) = 1

  • x4(y + 3) = 1

  • x2(y + 3)3 = ey + 2


Advertisement