The order and degree of the differential equation d3ydx32&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

651.

The solution of the differential equation xdydx = y + xtanyx is

  • sinxy = x + C

  • sinyx = Cx

  • sinxy = Cy

  • sinyx = Cy


652.

The integrating factor of the differential equation xdydx - y = 2x2 is

  • 1x

  • x

  • e-x

  • e-y


653.

If ddxfx = 4x3 - 3x4 such that f(2) = 0. Then, f(x) is

  • x3 + 1x4 - 1298

  • x4 + 1x3 + 1298

  • x3 + 1x4 + 1298

  • x4 + 1x3 - 1298


Advertisement

654.

The order and degree of the differential equation d3ydx32 - 3d2ydx2 + 2dydx4 = y4 are

  • 1, 4

  • 3, 4

  • 2, 4

  • 3, 2


D.

3, 2

d3ydx32 - 3d2ydx2 + 2dydx4 = y4Order = 3 and degree = 2


Advertisement
Advertisement
655.

The solution of the differential equation (1 + y2) dx = (tan-1((y) - x)dy is

  • xetan-1y = (1 - tan-1y)etan-1y + C

  • xetan-1y = (tan-1y - 1)etan-1y + C

  • x = tan-1y - 1 + Cetan-1y

  • None of the above


656.

The solution of the differential equation xdydx = y - xtanyx is

  • xsinxy + C = 0

  • xsiny + C = 0

  • xsinyx = C

  • None of these


657.

The particular solution of cosdydx = awhere, a  R, (y = 2 when x = 0), is

  • cosy - 2x = a

  • siny - 2x = a

  • cos-1x = y + a

  • y = acos-1x


658.

The order and degree of the differential equation d2ydx2 = y + dydx214 are given by

  • 4 and 2

  • 1 and 2

  • 1 and 4

  • 2 and 4


Advertisement
659.

The differential equation of the family of circles touching the y-axis at the origin is

  • xy' - 2y = 0

  • y'' - 4y' + 4y = 0

  • 2xyy' + x2 = y2

  • 2yy' + y2 = x2


660.

Solution of the equation cos2xdydx - tan2xy = cos2x, x < π4, where yπ6 = 338, is given by 

  • ytan2x1 - tan2x = 0

  • y1 - tan2x = C

  • y = sin2x + C

  • y = 12 sin2x1 - tan2x


Advertisement