The solution of the differential equation (1 + y2) dx = (tan-1((y

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

651.

The solution of the differential equation xdydx = y + xtanyx is

  • sinxy = x + C

  • sinyx = Cx

  • sinxy = Cy

  • sinyx = Cy


652.

The integrating factor of the differential equation xdydx - y = 2x2 is

  • 1x

  • x

  • e-x

  • e-y


653.

If ddxfx = 4x3 - 3x4 such that f(2) = 0. Then, f(x) is

  • x3 + 1x4 - 1298

  • x4 + 1x3 + 1298

  • x3 + 1x4 + 1298

  • x4 + 1x3 - 1298


654.

The order and degree of the differential equation d3ydx32 - 3d2ydx2 + 2dydx4 = y4 are

  • 1, 4

  • 3, 4

  • 2, 4

  • 3, 2


Advertisement
Advertisement

655.

The solution of the differential equation (1 + y2) dx = (tan-1((y) - x)dy is

  • xetan-1y = (1 - tan-1y)etan-1y + C

  • xetan-1y = (tan-1y - 1)etan-1y + C

  • x = tan-1y - 1 + Cetan-1y

  • None of the above


B.

xetan-1y = (tan-1y - 1)etan-1y + C

Given, differential equation can be written asdxdy + tan-1y - x1 + y2or dxdy + 11+ y2 . x = tan-1y1 + y2It is a linear differential equation of the formdxdy + Px = Qwhere, P = 11 + y2and     Q = tan-1y1 + y2 Integrating factor = ePdy        = e11 + y2dy        = etan-1y Solution isetan-1y . x = etan-1ytan-1y1 + y2dyPut tan-1y = t in right hand side, 11 + y2dy = dt xetan-1y = etII tI dt                        = tet - 1 . etdt + C                        = tet - et + C                        = tan-1y . etan-1y - etan-1y +C xetan-1y = (tan-1y - 1)etan-1y + C


Advertisement
656.

The solution of the differential equation xdydx = y - xtanyx is

  • xsinxy + C = 0

  • xsiny + C = 0

  • xsinyx = C

  • None of these


657.

The particular solution of cosdydx = awhere, a  R, (y = 2 when x = 0), is

  • cosy - 2x = a

  • siny - 2x = a

  • cos-1x = y + a

  • y = acos-1x


658.

The order and degree of the differential equation d2ydx2 = y + dydx214 are given by

  • 4 and 2

  • 1 and 2

  • 1 and 4

  • 2 and 4


Advertisement
659.

The differential equation of the family of circles touching the y-axis at the origin is

  • xy' - 2y = 0

  • y'' - 4y' + 4y = 0

  • 2xyy' + x2 = y2

  • 2yy' + y2 = x2


660.

Solution of the equation cos2xdydx - tan2xy = cos2x, x < π4, where yπ6 = 338, is given by 

  • ytan2x1 - tan2x = 0

  • y1 - tan2x = C

  • y = sin2x + C

  • y = 12 sin2x1 - tan2x


Advertisement