The solution of the differential equation dydx = s

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

The solution of the differential equation

xy2dy - x3 + y3dx = 0 is

  • y3 = 3x3 + c

  • y3 = 3x3 logcx

  • y3 = 3x3 + logcx

  • y3 +3x3 = logcx


Advertisement

702.

The solution of the differential equation dydx = sinx +ytanx + y - 1 is

  • cscx +y + tanx +y = x + c

  • x +cscx + y = c

  • x +tanx +y = c

  • x +secx +y = c


B.

x +cscx + y = c

Given, dydx = sinx +ytanx +y - 1Put x +y = z  1 +dydx = dzdx       dzdx - 1 = sinztanz - 1 coszsin2zdz = dxPut    sinz = t coszdz = dt 1t2dt = x - c  - 1t = x - c          - csc(z) = x - c x + csc(x + y) = c


Advertisement
703.

The differential equation of the family  y = aex + bxex + cx2ex of curves, where a, b, c are arbitrary constants , is 

  • y''' + 3y'' + 3' + y = 0

  • y''' + 3y'' - 3' - y = 0

  • y''' - 3y'' - 3' + y = 0

  • y''' - 3y'' + 3' - y = 0


704.

The solution of tanydydx = sinx + y + sinx - y is

  • sec(y) = 2cos(x) + c

  • sec(y) = - 2cos(x) + c

  • tan(y) =  - 2cos(x) + c

  • sec2(y) = - 2cos(x) + c


Advertisement
705.

A family of curves has the differential equation xydydx = 2y2 - x2. Then, the family of curves is

  • y2 = cx2 + x3

  • y2 = cx4 + x3

  • y2 = x + cx4

  • y2 = x2 + cx4


706.

The solution of the differential equation dydx = yx + ϕyxϕ'yx is

  • yx = k

  • ϕyx = kx

  • yx = k

  • ϕyx = ky


707.

If y = y(x) is the solution of the differential equation 2 + sinxy + 1dydx + cosx = 0 then y(π2)is equal to

  • 13

  • 23

  • 1

  • 43


708.

If u = fr, where r2 = x2 + y2, thenux2 + 2uy2 = ?

  • f''(r)

  • f''(r) +f'(r)

  • f''(r) + 1rf'(r)

  • f''(r) + rf'(r)


Advertisement
709.

If dydx + 2xtanx - y = 1, then sinx - y = ?

  • Ae- x2

  • Ae2x

  • Aex2

  • Ae - 2x


710.

An integrating factor of the differential equation1 - x2dydx + xy = x41 + x51 - x23 is 

  • 1 - x2

  • x1 - x2

  • x21 - x2

  • 11 - x2


Advertisement