If dydx + 2xtanx - y = 1, 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

The solution of the differential equation

xy2dy - x3 + y3dx = 0 is

  • y3 = 3x3 + c

  • y3 = 3x3 logcx

  • y3 = 3x3 + logcx

  • y3 +3x3 = logcx


702.

The solution of the differential equation dydx = sinx +ytanx + y - 1 is

  • cscx +y + tanx +y = x + c

  • x +cscx + y = c

  • x +tanx +y = c

  • x +secx +y = c


703.

The differential equation of the family  y = aex + bxex + cx2ex of curves, where a, b, c are arbitrary constants , is 

  • y''' + 3y'' + 3' + y = 0

  • y''' + 3y'' - 3' - y = 0

  • y''' - 3y'' - 3' + y = 0

  • y''' - 3y'' + 3' - y = 0


704.

The solution of tanydydx = sinx + y + sinx - y is

  • sec(y) = 2cos(x) + c

  • sec(y) = - 2cos(x) + c

  • tan(y) =  - 2cos(x) + c

  • sec2(y) = - 2cos(x) + c


Advertisement
705.

A family of curves has the differential equation xydydx = 2y2 - x2. Then, the family of curves is

  • y2 = cx2 + x3

  • y2 = cx4 + x3

  • y2 = x + cx4

  • y2 = x2 + cx4


706.

The solution of the differential equation dydx = yx + ϕyxϕ'yx is

  • yx = k

  • ϕyx = kx

  • yx = k

  • ϕyx = ky


707.

If y = y(x) is the solution of the differential equation 2 + sinxy + 1dydx + cosx = 0 then y(π2)is equal to

  • 13

  • 23

  • 1

  • 43


708.

If u = fr, where r2 = x2 + y2, thenux2 + 2uy2 = ?

  • f''(r)

  • f''(r) +f'(r)

  • f''(r) + 1rf'(r)

  • f''(r) + rf'(r)


Advertisement
Advertisement

709.

If dydx + 2xtanx - y = 1, then sinx - y = ?

  • Ae- x2

  • Ae2x

  • Aex2

  • Ae - 2x


C.

Aex2

Given differential equation isdydx + 2xtanx - y = 1Put x - y =t 1 - dydx = dtdx dydx =1 - dtdx 1 - dtdx + 2xtant = 1 dttant = 2xdx cottdt = 2xdxOn integrating both sides, we getlogsint = x2 + logA logsinx - y A = x2           sinx - y = Aex2


Advertisement
710.

An integrating factor of the differential equation1 - x2dydx + xy = x41 + x51 - x23 is 

  • 1 - x2

  • x1 - x2

  • x21 - x2

  • 11 - x2


Advertisement