By using the properties of definite integrals, evaluate the foll

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

211.

Evaluate:
integral subscript 0 superscript straight pi fraction numerator straight x over denominator 1 plus sin squared straight x end fraction dx.

123 Views

 Multiple Choice QuestionsShort Answer Type

212. By using the properties of definite integrals, evaluate the following:
integral subscript 0 superscript straight pi log space left parenthesis 1 plus cosx right parenthesis space dx
115 Views

213. By using the properties of definite integrals, evaluate the following:
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator straight x space sinx space cosx over denominator sin to the power of 4 straight x plus cos to the power of 4 straight x end fraction dx
153 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

214. By using the properties of definite integrals, evaluate the following:
integral subscript 0 superscript straight pi fraction numerator straight x space dx over denominator straight a squared space cos squared straight x plus straight b squared space sin squared straight x end fraction


Let I = integral subscript 0 superscript straight pi fraction numerator straight x space dx over denominator straight a squared cos squared straight x plus straight b squared sin squared straight x end fraction space space........(1)

therefore space space space space space thin space straight I space equals space integral subscript 0 superscript straight pi fraction numerator left parenthesis straight pi minus straight x right parenthesis dx over denominator straight a squared cos squared left parenthesis straight pi minus straight x right parenthesis plus straight b squared sin squared left parenthesis straight pi minus straight x right parenthesis end fraction space equals space integral subscript 0 superscript straight pi fraction numerator left parenthesis straight pi minus straight x right parenthesis space dx over denominator straight a squared cos squared straight x plus straight b squared sin squared straight x end fraction dx
            equals straight pi integral subscript 0 superscript straight pi fraction numerator 1 over denominator straight a squared cos squared straight x plus straight b squared sin squared straight x end fraction dx space minus integral subscript 0 superscript straight pi fraction numerator xdx over denominator straight a squared space cos squared straight x plus straight b squared space sin squared straight x end fraction

 therefore space space space space space straight I space equals space straight pi integral subscript 0 superscript straight pi fraction numerator 1 over denominator straight a squared cos squared straight x plus straight b squared sin squared straight x end fraction dx minus 1                                         open square brackets because space of space left parenthesis 1 right parenthesis close square brackets

 therefore space space space 2 space straight I space equals space 2 integral subscript 0 superscript straight pi over 2 end superscript fraction numerator 1 over denominator straight a squared space cos squared straight x plus straight b squared space sin squared straight x end fraction dx

therefore space space 2 space space straight I space space equals space 2 integral subscript 0 superscript straight pi fraction numerator begin display style fraction numerator 1 over denominator cos squared straight x end fraction end style dx over denominator straight a squared plus straight b squared begin display style fraction numerator sin squared straight x over denominator cos squared straight x end fraction end style end fraction
therefore space space space space straight I space equals space straight pi integral subscript 0 superscript straight pi over 2 end superscript fraction numerator sec squared straight x space dx over denominator straight a squared plus straight b squared space tan squared straight x end fraction

Put tan x =  t,   ∴ sec2 x dx = dt   When x = 0, t = tan 0 = 0
When straight x space equals space straight pi over 2 comma space space space straight t space equals space tan straight pi over 2 space equals space infinity
therefore space space space space space straight I space equals space straight pi integral subscript 0 superscript infinity fraction numerator dt over denominator straight a squared plus straight b squared straight t squared end fraction space equals space straight pi over straight b squared integral subscript 0 superscript infinity fraction numerator 1 over denominator open parentheses begin display style straight a over straight b end style close parentheses squared plus straight t squared end fraction dt
             equals space straight pi over straight b squared. fraction numerator 1 over denominator begin display style straight a over straight b end style end fraction open square brackets tan to the power of negative 1 end exponent open parentheses fraction numerator straight t over denominator begin display style straight a over straight b end style end fraction close parentheses close square brackets subscript 0 superscript infinity space equals space fraction numerator straight pi over denominator straight a space straight b end fraction left parenthesis tan to the power of negative 1 end exponent infinity space minus space tan to the power of negative 1 end exponent 0 right parenthesis space equals space straight pi over ab open parentheses straight pi over 2 minus 0 close parentheses
therefore space space space space straight I space equals space fraction numerator straight pi squared over denominator 2 ab end fraction

170 Views

Advertisement
Advertisement

 Multiple Choice QuestionsShort Answer Type

215.

Show that:
integral subscript 0 superscript straight a fraction numerator square root of straight x over denominator square root of straight x plus square root of straight a minus straight x end root end fraction space equals space straight a over 2

104 Views

216.

Show that:
integral subscript 0 superscript straight a fraction numerator 1 over denominator straight x plus square root of straight a squared minus straight x squared end root end fraction dx space equals space straight pi over 4

131 Views

217.

Evaluate  integral subscript 1 superscript 4 straight f left parenthesis straight x right parenthesis space dx space space where space straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 1 close vertical bar space plus space open vertical bar straight x minus 2 close vertical bar space plus space open vertical bar straight x minus 3 close vertical bar

231 Views

218.

Evaluate:  integral subscript negative 5 end subscript superscript 0 space straight f left parenthesis straight x right parenthesis space dx comma space space where space straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x close vertical bar plus open vertical bar straight x plus 2 close vertical bar plus open vertical bar straight x plus 5 close vertical bar.

149 Views

Advertisement
219.

Evaluate: integral subscript negative 5 end subscript superscript 0 straight f left parenthesis straight x right parenthesis space dx comma space space space where space straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x close vertical bar plus open vertical bar straight x plus 3 close vertical bar plus open vertical bar straight x plus 6 close vertical bar.

171 Views

220.

If  [ x ] stands for integral part of x, then show that integral subscript 0 superscript 1 left square bracket 5 space straight x right square bracket space dx space equals space 2.

239 Views

Advertisement