Evaluate: ∫23 1x dx
Evaluate: ∫ sin x sin 2x sin 3x dx
Evaluate: ∫ 2( 1 - x ) ( 1 + x2 ) dx
Prove that ∫0π4 tan x + cot x dx = 2. π2
Evaluate ∫13 2 x2 + 5 x dx as a limit of sum.
∫13 2 x2 + 5 x dxHere, a = 1, b = 3, f ( x ) = 2 x2 + 5 x∴ n h = b - a = 3 - 1 = 2Now ∫ab f ( x ) dx = limh → 0 h f ( a ) + f ( a + h ) + f ( a + 2 h ) + .....+ F ( a + ( n - 1 ) h )∴ ∫13 2 x2 + 5 x dx= limh → 0 h f ( 1 ) + f ( 1 + h ) + f ( 1 + 2 h ) + .....+ F ( 1 + ( n - 1 ) h )
= limh → 0 h 2 ( 1 )2 + 5 ( 1 ) + 2 ( 1 + h )2 + 5 ( 1 + h ) + 2 ( 1 + 2 h )2 + 5 ( 1 + 2 h ) ....... + 2 ( 1 + ( n - 1 h )2 + 5 ( 1 + ( n - 1 ) h ) )= limh → 0 h 7 + 2 h2 9 h + 7 + 8 h2 + 18 h + 7 +.......... + 2 ( n - 1 2 h2 + 9 ( n - 1 ) h + 7 )= limh → 0 h 7 n + 2 h2 ( 12 + 22 + ........+ ( n - 1 )2 ) + 9 h ( 1 + 2 + ........+ ( n - 1 ) = limh → 0 h 7 n + 2 h2 n ( n - 1 ) ( 2 n - 1 )6 + 9 h n ( n - 1 )2
= limh → 0 h 7 n h + 2 n h ( n h - h ) ( 2 n h - h )6 + 9 n h ( n h - h )2 = limh → 0 h 14 + 2 2 ( 2 - h ) ( 4 - h )6 + 9 2 ( 2 - h )2 = 14 + 163 + 18= 1123
The integral is equal to
Two sides of a rhombus are along the lines, x−y+1=0 and 7x−y−5=0. If its diagonals intersect at (−1, −2), then which one of the following is a vertex of this rhombus?
(−3, −9)
(−3, −8)
(1/3, -8/3)
The centres of those circles which touch the circle, x2+y2−8x−8y−4=0, externally and also touch the x-axis, lie on:
a circle
an ellipse which is not a circle
a hyperbola.
The integral
2
4
1