If
(sinα, cosα)
(cosα, sinα)
(- sinα, cosα)
The value of
28/7
28/3
7/3
0
1
2
π
π/2
If then the value of I2/I1 is
-2
The value of ∫-π2π2sin2x1+2xdx is:
π/4
π/8
4π
The Integral∫sin2 x cos2 x (sin5 x + cos3 x sin2 x + sin3 x cos2 x + cos 5x)2dx is equal to
(where C is a constant of integration)
-11+ cot3 x + C
13(1 + tan3 x) + C
-13(1 + tan3 x ) +C
11+ cot3 x + C
∫coslogxdx = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
xcoslogx + sinlogx
xcoslogx - sinlogx
x2coslogx + sinlogx
x2coslogx - sinlogx
C.
Let I = ∫coslogxdx
Put log(x) = t
⇒ x = et
∴ dx = etdt
∴ I = ∫etcostdt
= et12 + 12cost + sint + C
∵ ∫eax cosbxdx = eaxa2 + b2acosbx + bsinbx + C
⇒ I = et2cost + sint + C
= x2coslogx + sinlogx + C
∴ f(x) = x2coslogx + sinlogx + C
∫x2 - 1x4 + 3x2 + 1dx(x > 0) is
tan-1x + 1x + C
tan-1x - 1x + C
logex + 1x - 1x + 1x + 1 + C
logex - 1x - 1x - 1x + 1 + C