If
(sinα, cosα)
(cosα, sinα)
(- sinα, cosα)
The value of
28/7
28/3
7/3
0
1
2
π
π/2
If then the value of I2/I1 is
-2
The value of ∫-π2π2sin2x1+2xdx is:
π/4
π/8
4π
The Integral∫sin2 x cos2 x (sin5 x + cos3 x sin2 x + sin3 x cos2 x + cos 5x)2dx is equal to
(where C is a constant of integration)
-11+ cot3 x + C
13(1 + tan3 x) + C
-13(1 + tan3 x ) +C
11+ cot3 x + C
∫coslogxdx = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
xcoslogx + sinlogx
xcoslogx - sinlogx
x2coslogx + sinlogx
x2coslogx - sinlogx
∫x2 - 1x4 + 3x2 + 1dx(x > 0) is
tan-1x + 1x + C
tan-1x - 1x + C
logex + 1x - 1x + 1x + 1 + C
logex - 1x - 1x - 1x + 1 + C
A.
Let I = ∫x2 - 1x4 + 3x2 + 1dx
Dividing Numerator and Denominator by x2,
= ∫ 1 - 1/x2x2 + 3 + 1/x2dx
= ∫1 - 1/x2x2 + 1x2 + 3dx
= ∫1 - 1/x2x + 1x2 - 2 + 3dx
= ∫1 - 1/x2x + 1x2 + 1dx
Put x + 1x = t
⇒ 1 - 1x2dx = dt
∴ I = ∫dtt2 + 1
= tan-1t + C
= tan-1x + 1x + C ∵ t = x + 1x